vector fibration
Смотреть что такое "vector fibration" в других словарях:
Hopf fibration — In the mathematical field of topology, the Hopf fibration (also known as the Hopf bundle or Hopf map) describes a 3 sphere (a hypersphere in four dimensional space) in terms of circles and an ordinary sphere. Discovered by Heinz Hopf in 1931, it… … Wikipedia
Symplectic manifold — In mathematics, a symplectic manifold is a smooth manifold, M, equipped with a closed nondegenerate differential 2 form, ω, called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology.… … Wikipedia
Normal invariant — In mathematics, a normal map is a concept in geometric topology due to William Browder which is of fundamental importance in surgery theory. Given a Poincaré complex X, a normal map on X endows the space, roughly speaking, with some of the… … Wikipedia
Navier–Stokes equations — Continuum mechanics … Wikipedia
Fiber bundle — In mathematics, in particular in topology, a fiber bundle (or fibre bundle) is a space which looks locally like a product space. It may have a different global topological structure in that the space as a whole may not be homeomorphic to a… … Wikipedia
Supergravity — In theoretical physics, supergravity (supergravity theory) is a field theory that combines the principles of supersymmetry and general relativity. Together, these imply that, in supergravity, the supersymmetry is a local symmetry (in contrast to… … Wikipedia
Fibred category — Fibred categories are abstract entities in mathematics used to provide a general framework for descent theory. They formalise the various situations in geometry and algebra in which inverse images (or pull backs) of objects such as vector bundles … Wikipedia
Clutching construction — In topology, a branch of mathematics, the clutching construction is a way of constructing fiber bundles, particularly vector bundles on spheres. Contents 1 Definition 1.1 Generalization 1.2 Classifying map construction … Wikipedia
Stable normal bundle — In surgery theory, a branch of mathematics, the stable normal bundle of a differentiable manifold is an invariant which encodes the stable normal (dually, tangential) data. It is also called the Spivak normal bundle, after Michael Spivak… … Wikipedia
Complex projective space — The Riemann sphere, the one dimensional complex projective space, i.e. the complex projective line. In mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a … Wikipedia
Twistor space — In mathematics, twistor space is the complex vector space of solutions of the twistor equation . It was described in the 1960s by Roger Penrose and MacCallum[1]. According to Andrew Hodges, twistor space is useful for conceptualizing the way… … Wikipedia