- unramified function
- мат. неразветвленная функция
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Artin L-function — In mathematics, an Artin L function is a type of Dirichlet series associated to a linear representation ρ of a Galois group G . These functions were introduced in the 1923 by Emil Artin, in connection with his research into class field theory.… … Wikipedia
Hasse-Weil zeta function — In mathematics, the Hasse Weil zeta function attached to an algebraic variety V defined over a number field K is one of the two most important types of L function. Such L functions are called global , in that they are defined as Euler products in … Wikipedia
Algebraic number field — In mathematics, an algebraic number field (or simply number field) F is a finite (and hence algebraic) field extension of the field of rational numbers Q. Thus F is a field that contains Q and has finite dimension when considered as a vector… … Wikipedia
Discriminant of an algebraic number field — A fundamental domain of the ring of integers of the field K obtained from Q by adjoining a root of x3 − x2 − 2x + 1. This fundamental domain sits inside K ⊗QR. The discriminant of K is 49 = 72.… … Wikipedia
Frobenius endomorphism — In commutative algebra and field theory, which are branches of mathematics, the Frobenius endomorphism (after Ferdinand Georg Frobenius) is a special endomorphism of rings with prime characteristic p , a class importantly including fields. The… … Wikipedia
Chebotarev's density theorem — in algebraic number theory describes statistically the splitting of primes in a given Galois extension K of the field Q of rational numbers. Generally speaking, a prime integer will factor into several ideal primes in the ring of algebraic… … Wikipedia
Riemann-Hurwitz formula — In mathematics, the Riemann Hurwitz formula, named after Bernhard Riemann and Adolf Hurwitz, describes the relationship of the Euler characteristics of two surfaces when one is a ramified covering of the other. It therefore connects ramification… … Wikipedia
Étale morphism — In algebraic geometry, a field of mathematics, an étale morphism (pronunciation IPA|) is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem,… … Wikipedia
J-invariant — nome q on the unit diskIn mathematics, Klein s j invariant, regarded as a function of a complex variable tau;, is a modular function defined on the upper half plane of complex numbers. We can express it in terms of Jacobi s theta functions, in… … Wikipedia
Séminaire Nicolas Bourbaki (1950–1959) — Continuation of the Séminaire Nicolas Bourbaki programme, for the 1950s. 1950/51 series *33 Armand Borel, Sous groupes compacts maximaux des groupes de Lie, d après Cartan, Iwasawa et Mostow (maximal compact subgroups) *34 Henri Cartan, Espaces… … Wikipedia
Forcing (mathematics) — For the use of forcing in recursion theory, see Forcing (recursion theory). In the mathematical discipline of set theory, forcing is a technique invented by Paul Cohen for proving consistency and independence results. It was first used, in 1963,… … Wikipedia