two-dimensional geometry

two-dimensional geometry
мат. планиметрия, геометрия (на) плоскости

Большой англо-русский и русско-английский словарь. 2001.

Игры ⚽ Поможем написать реферат

Смотреть что такое "two-dimensional geometry" в других словарях:

  • Two-dimensional graph — A two dimensional graph is the graph of a function of one variable f ( x ). Provided that x and f ( x ) are real numbers, the graph can be represented as a straight or curved curve in a two dimensional Cartesian coordinate system.ExampleThe graph …   Wikipedia

  • geometry — Although various laws concerning lines and angles were known to the Egyptians and the Pythagoreans, the systematic treatment of geometry by the axiomatic method began with the Elements of Euclid . From a small number of explicit axioms,… …   Philosophy dictionary

  • geometry — /jee om i tree/, n. 1. the branch of mathematics that deals with the deduction of the properties, measurement, and relationships of points, lines, angles, and figures in space from their defining conditions by means of certain assumed properties… …   Universalium

  • Geometry — (Greek γεωμετρία ; geo = earth, metria = measure) is a part of mathematics concerned with questions of size, shape, and relative position of figures and with properties of space. Geometry is one of the oldest sciences. Initially a body of… …   Wikipedia

  • Euclidean geometry — geometry based upon the postulates of Euclid, esp. the postulate that only one line may be drawn through a given point parallel to a given line. [1860 65] * * * Study of points, lines, angles, surfaces, and solids based on Euclid s axioms. Its… …   Universalium

  • Plane (geometry) — Two intersecting planes in three dimensional space In mathematics, a plane is a flat, two dimensional surface. A plane is the two dimensional analogue of a point (zero dimensions), a line (one dimension) and a space (three dimensions). Planes can …   Wikipedia

  • Geometry and topology — In mathematics, geometry and topology is an umbrella term for geometry and topology, as the line between these two is often blurred, most visibly in local to global theorems in Riemannian geometry, and results like the Gauss–Bonnet theorem and… …   Wikipedia

  • Geometry of numbers — In number theory, the geometry of numbers is a topic and method arising from the work of Hermann Minkowski, on the relationship between convex sets and lattices in n dimensional space. It has frequently been used in an auxiliary role in proofs,… …   Wikipedia

  • Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… …   Wikipedia

  • Lie sphere geometry — is a geometrical theory of planar or spatial geometry in which the fundamental concept is the circle or sphere. It was introduced by Sophus Lie in the nineteenth century. [The definitive modern textbook on Lie sphere geometry is Harvnb|Cecil|1992 …   Wikipedia

  • Conformal geometry — In mathematics, conformal geometry is the study of the set of angle preserving (conformal) transformations on a space. In two real dimensions, conformal geometry is precisely the geometry of Riemann surfaces. In more than two dimensions,… …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»