- transcendence degree
- мат. степень трансцендетности
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Transcendence degree — In abstract algebra, the transcendence degree of a field extension L / K is a certain rather coarse measure of the size of the extension. Specifically, it is defined as the largest cardinality of an algebraically independent subset of L over K .A … Wikipedia
Transcendence theory — In mathematics, transcendence theory is a branch of number theory that investigates transcendental numbers, in both qualitative and quantitative ways.TranscendenceThe fundamental theorem of algebra tells us that if we have a non zero polynomial… … Wikipedia
Degree of a field extension — In mathematics, more specifically field theory, the degree of a field extension is a rough measure of the size of the extension. The concept plays an important role in many parts of mathematics, including algebra and number theory indeed in any… … Wikipedia
Field extension — In abstract algebra, field extensions are the main object of study in field theory. The general idea is to start with a base field and construct in some manner a larger field which contains the base field and satisfies additional properties. For… … Wikipedia
Schanuel's conjecture — In mathematics, specifically transcendence theory, Schanuel s conjecture is the following statement::Given any n complex numbers z 1,..., z n which are linearly independent over the rational numbers Q, the extension field Q( z 1,..., z n ,exp( z… … Wikipedia
Matroid — In combinatorics, a branch of mathematics, a matroid ( /ˈmeɪ … Wikipedia
List of mathematics articles (T) — NOTOC T T duality T group T group (mathematics) T integration T norm T norm fuzzy logics T schema T square (fractal) T symmetry T table T theory T.C. Mits T1 space Table of bases Table of Clebsch Gordan coefficients Table of divisors Table of Lie … Wikipedia
Pluricanonical ring — In mathematics, the pluricanonical ring of an algebraic variety V (which is non singular), or of a complex manifold, is the graded ring R(V,K)=R(V,K V) of sections of powers of the canonical bundle K .Its n th graded component (for ngeq 0) is::R… … Wikipedia
Lindemann–Weierstrass theorem — In mathematics, the Lindemann–Weierstrass theorem is a result that is very useful in establishing the transcendence of numbers. It states that if α1,...,α n are algebraic numbers which are linearly independent over the rational numbers Q, then… … Wikipedia
Function field (scheme theory) — In algebraic geometry, the function field KX of a scheme X is a generalization of the notion of a sheaf of rational functions on a variety. In the case of varieties, such a sheaf associates to each open set U the ring of all rational functions on … Wikipedia
Residue field — In mathematics, the residue field is a basic construction in commutative algebra. If R is a commutative ring and m is a maximal ideal, then the residue field is the quotient ring k = R / m , which is a field. Frequently, R is a local ring and m… … Wikipedia