- tautological equivalence
- мат. тавтологическая эквивалентность
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Tautology (rhetoric) — In rhetoric, a tautology is an unnecessary (and usually unintentional) repetition of meaning, using different words that effectively say the same thing twice (often originally from different languages). It is often regarded as a fault of style… … Wikipedia
Laws of Form — (hereinafter LoF ) is a book by G. Spencer Brown, published in 1969, that straddles the boundary between mathematics and of philosophy. LoF describes three distinct logical systems: * The primary arithmetic (described in Chapter 4), whose models… … Wikipedia
Line bundle — In mathematics, a line bundle expresses the concept of a line that varies from point to point of a space. For example a curve in the plane having a tangent line at each point determines a varying line: the tangent bundle is a way of organising… … Wikipedia
Cotangent bundle — In mathematics, especially differential geometry, the cotangent bundle of a smooth manifold is the vector bundle of all the cotangent spaces at every point in the manifold. It may be described also as the dual bundle to the tangent bundle.… … Wikipedia
Special relativity — (SR) (also known as the special theory of relativity or STR) is the physical theory of measurement in inertial frames of reference proposed in 1905 by Albert Einstein (after considerable contributions of Hendrik Lorentz and Henri Poincaré) in the … Wikipedia
Real projective space — In mathematics, real projective space, or RP n is the projective space of lines in R n +1. It is a compact, smooth manifold of dimension n , and a special case of a Grassmannian.ConstructionAs with all projective spaces, RP n is formed by taking… … Wikipedia
Moving frame — The Frenet Serret frame on a curve is the simplest example of a moving frame. In mathematics, a moving frame is a flexible generalization of the notion of an ordered basis of a vector space often used to study the extrinsic differential geometry… … Wikipedia
Maurer–Cartan form — In mathematics, the Maurer–Cartan form for a Lie group G is a distinguished differential one form on G that carries the basic infinitesimal information about the structure of G. It was much used by Élie Cartan as a basic ingredient of his method… … Wikipedia
Conformal geometry — In mathematics, conformal geometry is the study of the set of angle preserving (conformal) transformations on a space. In two real dimensions, conformal geometry is precisely the geometry of Riemann surfaces. In more than two dimensions,… … Wikipedia
G-structure — In differential geometry, a G structure on an n manifold M , for a given structure group [Which is a Lie group G o GL(n,mathbf{R}) mapping to the general linear group GL(n,mathbf{R}). This is often but not always a Lie subgroup; for instance, for … Wikipedia
Anthropic principle — In astrophysics and cosmology, the anthropic principle is the philosophical argument that observations of the physical Universe must be compatible with the conscious life that observes it. Some proponents of the argument reason that it explains… … Wikipedia