- symmetric subspace
- мат. симметрическое подпространство
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Symmetric algebra — In mathematics, the symmetric algebra S ( V ) (also denoted Sym ( V )) on a vector space V over a field K is the free commutative unital associative K algebra containing V .It corresponds to polynomials with indeterminates in V , without choosing … Wikipedia
Symmetric bilinear form — A symmetric bilinear form is, as the name implies, a bilinear form on a vector space that is symmetric. They are of great importance in the study of orthogonal polarities and quadrics.They are also more briefly referred to as symmetric forms when … Wikipedia
Symmetric space — In differential geometry, representation theory and harmonic analysis, a symmetric space is a smooth manifold whose group of symmetries contains an inversion symmetry about every point. There are two ways to make this precise. In Riemannian… … Wikipedia
Extensions of symmetric operators — In functional analysis, one is interested in extensions of symmetric operators acting on a Hilbert space. Of particular importance is the existence, and sometimes explicit constructions, of self adjoint extensions. This problem arises, for… … Wikipedia
Symplectic vector space — In mathematics, a symplectic vector space is a vector space V equipped with a nondegenerate, skew symmetric, bilinear form omega; called the symplectic form. Explicitly, a symplectic form is a bilinear form omega; : V times; V rarr; R which is *… … Wikipedia
Lie sphere geometry — is a geometrical theory of planar or spatial geometry in which the fundamental concept is the circle or sphere. It was introduced by Sophus Lie in the nineteenth century. [The definitive modern textbook on Lie sphere geometry is Harvnb|Cecil|1992 … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia
Exterior algebra — In mathematics, the exterior product or wedge product of vectors is an algebraic construction generalizing certain features of the cross product to higher dimensions. Like the cross product, and the scalar triple product, the exterior product of… … Wikipedia
List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… … Wikipedia
Rotation matrix — In linear algebra, a rotation matrix is a matrix that is used to perform a rotation in Euclidean space. For example the matrix rotates points in the xy Cartesian plane counterclockwise through an angle θ about the origin of the Cartesian… … Wikipedia
Clifford algebra — In mathematics, Clifford algebras are a type of associative algebra. They can be thought of as one of the possible generalizations of the complex numbers and quaternions.[1][2] The theory of Clifford algebras is intimately connected with the… … Wikipedia