- surjective morphism
- мат. сюръективный морфизм
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Surjective function — Onto redirects here. For other uses, see wikt:onto. A surjective function from domain X to codomain Y. The function is surjective because every point in the codomain is the value of f(x) for at least one point x in the domain. In mathematics, a… … Wikipedia
Morphism — In mathematics, a morphism is an abstraction derived from structure preserving mappings between two mathematical structures. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear… … Wikipedia
Finite morphism — In algebraic geometry, a branch of mathematics, a morphism of schemes is a finite morphism, if Y has an open cover by affine schemes Vi = SpecBi such that for each i, f − 1(Vi) = Ui is an open affine subscheme SpecAi, and the restriction of … Wikipedia
Étale morphism — In algebraic geometry, a field of mathematics, an étale morphism (pronunciation IPA|) is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem,… … Wikipedia
Sheaf (mathematics) — This article is about sheaves on topological spaces. For sheaves on a site see Grothendieck topology and Topos. In mathematics, a sheaf is a tool for systematically tracking locally defined data attached to the open sets of a topological space.… … Wikipedia
Fundamental theorem of cyclic groups — In abstract algebra, the fundamental theorem of cyclic groups states that if G, is a cyclic group of order n, then every subgroup of G, is cyclic. Moreover, the order of any subgroup of G, is a divisor of n, and for each positive divisor k, of n … Wikipedia
Coherent sheaf — In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a specific class of sheaves having particularly manageable properties closely linked to the geometrical properties of the underlying space … Wikipedia
Localization of a category — In mathematics, localization of a category consists of adding to a category inverse morphisms for some collection of morphisms, constraining them to become isomorphisms. This is formally similar to the process of localization of a ring; it in… … Wikipedia
Classical modular curve — In number theory, the classical modular curve is an irreducible plane algebraic curve given by an equation Φn(x, y)=0, where for the j invariant j(τ), x=j(n τ), y=j(τ) is a point on the curve. The curve is sometimes called X0(n), though often… … Wikipedia
Algebraic torus — In mathematics, an algebraic torus is a type of commutative affine algebraic group. These groups were named by analogy with the theory of tori in Lie group theory (see maximal torus). The theory of tori is in some sense opposite to that of… … Wikipedia
Degree of a field extension — In mathematics, more specifically field theory, the degree of a field extension is a rough measure of the size of the extension. The concept plays an important role in many parts of mathematics, including algebra and number theory indeed in any… … Wikipedia