- summable integral
- мат. суммируемый интеграл
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
summable — summability, n. /sum euh beuhl/, adj. Math. 1. capable of being added. 2. (of an infinite series, esp. a divergent one) capable of having a sum assigned to it by a method other than the usual one of taking the limit of successive partial sums. 3 … Universalium
summable — adjective Having a Lebesgue integral … Wiktionary
Improper integral — In calculus, an improper integral is the limit of a definite integral as an endpoint of the interval of integration approaches either a specified real number or ∞ or −∞ or, in some cases, as both endpoints approach limits.Specifically, an… … Wikipedia
Cesàro summation — For the song Cesaro Summability by the band Tool, see Ænima. In mathematical analysis, Cesàro summation is an alternative means of assigning a sum to an infinite series. If the series converges in the usual sense to a sum A, then the series is… … Wikipedia
Series (mathematics) — A series is the sum of the terms of a sequence. Finite sequences and series have defined first and last terms, whereas infinite sequences and series continue indefinitely.[1] In mathematics, given an infinite sequence of numbers { an } … Wikipedia
Summation of Grandi's series — General considerationstability and linearityThe formal manipulations that lead to 1 − 1 + 1 − 1 + · · · being assigned a value of 1⁄2 include: *Adding or subtracting two series term by term, *Multiplying through by a scalar term by term, *… … Wikipedia
Fourier series — Fourier transforms Continuous Fourier transform Fourier series Discrete Fourier transform Discrete time Fourier transform Related transforms … Wikipedia
1 − 2 + 3 − 4 + · · · — In mathematics, 1 − 2 + 3 − 4 + … is the infinite series whose terms are the successive positive integers, given alternating signs. Using sigma summation notation the sum of the first m terms of the series can be expressed as:sum {n=1}^m n( 1)^{n … Wikipedia
History of Grandi's series — Geometry and infinite zerosGrandiGuido Grandi (1671 – 1742) reportedly provided a simplistic account of the series in 1703. He noticed that inserting parentheses into nowrap|1=1 − 1 + 1 − 1 + · · · produced varying results: either:(1 1) + (1 1) + … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia
Convergence of Fourier series — In mathematics, the question of whether the Fourier series of a periodic function converges to the given function is researched by a field known as classical harmonic analysis, a branch of pure mathematics. Convergence is not necessarily a given… … Wikipedia