- standard geometry
- стандартная геометрия (детали технологического семейства)
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Geometry — (Greek γεωμετρία ; geo = earth, metria = measure) is a part of mathematics concerned with questions of size, shape, and relative position of figures and with properties of space. Geometry is one of the oldest sciences. Initially a body of… … Wikipedia
geometry — /jee om i tree/, n. 1. the branch of mathematics that deals with the deduction of the properties, measurement, and relationships of points, lines, angles, and figures in space from their defining conditions by means of certain assumed properties… … Universalium
Standard basis — In mathematics, the standard basis (also called natural basis or canonical basis) of the n dimensional Euclidean space Rn is the basis obtained by taking the n basis vectors:{ e i : 1leq ileq n}where e i is the vector with a 1 in the ith… … Wikipedia
Geometry shader — Shader Un shader (anglais, du verbe to shade : ombrager ou estomper, nuancer) est un programme[Quoi ?] utilisé en image de synthèse pour paramétrer une partie du processus de rendu réalisé par une carte graphique ou un moteur de rendu… … Wikipédia en Français
Standard conjectures on algebraic cycles — In mathematics, the standard conjectures about algebraic cycles is a package of several conjectures describing the relationship of algebraic cycles and Weil cohomology theories. The original application envisaged by Grothendieck was to prove that … Wikipedia
Euclidean geometry — geometry based upon the postulates of Euclid, esp. the postulate that only one line may be drawn through a given point parallel to a given line. [1860 65] * * * Study of points, lines, angles, surfaces, and solids based on Euclid s axioms. Its… … Universalium
Greek arithmetic, geometry and harmonics: Thales to Plato — Ian Mueller INTRODUCTION: PROCLUS’ HISTORY OF GEOMETRY In a famous passage in Book VII of the Republic starting at Socrates proposes to inquire about the studies (mathēmata) needed to train the young people who will become leaders of the ideal… … History of philosophy
Descriptive geometry — is the branch of geometry which allows the representation of three dimensional objects in two dimensions, by using a specific set of procedures. The resulting techniques are important for engineering, architecture, design and in art. [1] Drawing… … Wikipedia
Noncommutative standard model — In theoretical particle physics, the non commutative Standard Model, mainly due to the French mathematician Alain Connes, uses his noncommutative geometry to devise an extension of the Standard Model to include a modified form of general… … Wikipedia
analytic geometry — a branch of mathematics in which algebraic procedures are applied to geometry and position is represented analytically by coordinates. Also called coordinate geometry. [1820 30] * * * Investigation of geometric objects using coordinate systems.… … Universalium
Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… … Wikipedia