spherical indicatrix

spherical indicatrix
мат. сферическая индикатриса

Большой англо-русский и русско-английский словарь. 2001.

Игры ⚽ Нужен реферат?

Смотреть что такое "spherical indicatrix" в других словарях:

  • Tissot's Indicatrix — Tissot’s indicatrix, or ellipse of distortion, is a concept developed by French mathematician Nicolas Auguste Tissot, in 1859 and 1871, to measure and illustrate distortions due to map projection. It is the theoretical figure that results from… …   Wikipedia

  • Map projection — A medieval depiction of the Ecumene (1482, Johannes Schnitzer, engraver), constructed after the coordinates in Ptolemy s Geography and using his second map projection A map projection is any method of representing the surface of a sphere or other …   Wikipedia

  • Mercator projection — of the world between 82°S and 82°N. Mercator world …   Wikipedia

  • Nicolas Auguste Tissot — (1824–1897) was a 19th century French cartographer, who in 1859 and 1881 published an analysis of the distortion that occurs on map projections. He devised Tissot s indicatrix, or distortion circle, which when plotted on a map will appear as an… …   Wikipedia

  • List of differential geometry topics — This is a list of differential geometry topics. See also glossary of differential and metric geometry and list of Lie group topics. Contents 1 Differential geometry of curves and surfaces 1.1 Differential geometry of curves 1.2 Differential… …   Wikipedia

  • List of mathematics articles (D) — NOTOC D D distribution D module D D Agostino s K squared test D Alembert Euler condition D Alembert operator D Alembert s formula D Alembert s paradox D Alembert s principle Dagger category Dagger compact category Dagger symmetric monoidal… …   Wikipedia

  • Electro-gyration — The electrogyration effect is the spatial dispersion phenomenon, that consists in the change of optical activity (gyration) of crystals by a constant or time varying electric field. Being a spatial dispersion effect, the induced optical activity… …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»