singular quartic
Смотреть что такое "singular quartic" в других словарях:
Rational variety — In mathematics, a rational variety is an algebraic variety, over a given field K, which is birationally equivalent to projective space of some dimension over K. This is a question on its function field: is it up to isomorphism the field of all… … Wikipedia
Algebraic curve — In algebraic geometry, an algebraic curve is an algebraic variety of dimension one. The theory of these curves in general was quite fully developed in the nineteenth century, after many particular examples had been considered, starting with… … Wikipedia
Cubic surface — A cubic surface is a projective variety studied in algebraic geometry. It is an algebraic surface in three dimensional projective space defined by a single polynomial which is homogeneous of degree 3 (hence, cubic). Cubic surfaces are del Pezzo… … Wikipedia
Linear system of divisors — A linear system of divisors algebraicizes the classic geometric notion of a family of curves, as in the Apollonian circles. In algebraic geometry, a linear system of divisors is an algebraic generalization of the geometric notion of a family of… … Wikipedia
Del Pezzo surface — In mathematics, a del Pezzo surface or Fano surface is a two dimensional Fano variety, in other words a non singular projective algebraic surface with ample anticanonical divisor class. They are in some sense the opposite of surfaces of general… … Wikipedia
Riemann surface — For the Riemann surface of a subring of a field, see Zariski–Riemann space. Riemann surface for the function ƒ(z) = √z. The two horizontal axes represent the real and imaginary parts of z, while the vertical axis represents the real… … Wikipedia
Timeline of mathematics — A timeline of pure and applied mathematics history. Contents 1 Before 1000 BC 2 1st millennium BC 3 1st millennium AD 4 1000–1500 … Wikipedia
Canonical bundle — In mathematics, the canonical bundle of a non singular algebraic variety V of dimension n is the line bundle which is the nth exterior power of the cotangent bundle Ω on V. Over the complex numbers, it is the determinant bundle of holomorphic n… … Wikipedia
Plane curve — In mathematics, a plane curve is a curve in a Euclidean plane (cf. space curve). The most frequently studied cases are smooth plane curves (including piecewise smooth plane curves), and algebraic plane curves. A smooth plane curve is a curve in a … Wikipedia
Genus–degree formula — In classical algebraic geometry, the genus–degree formula relates the degree d of a non singular plane curve with its arithmetic genus g via the formula: A singularity of order r decreases the genus by .[1] Proofs The proof follows immediately… … Wikipedia
Hyperelliptic curve — In algebraic geometry, a hyperelliptic curve (over the complex numbers) is an algebraic curve given by an equation of the form:y^2 = f(x)where f(x) is a polynomial of degree n > 4 with n distinct roots. A hyperelliptic function is a function from … Wikipedia