- separable space
- мат. сепарабельное пространство;
отделимое пространство
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Separable space — In mathematics a topological space is called separable if it contains a countable dense subset; that is, there exists a sequence { x n } {n=1}^{infty} of elements of the space such that every nonempty open subset of the space contains at least… … Wikipedia
separable space — area that can be divided into separate parts (Mathematics) … English contemporary dictionary
space — 1. noun /speɪs/ a) The intervening contents of a volume. If it be only a Single Letter or two that drops, he thruſts the end of his Bodkin between every Letter of that Word, till he comes to a Space: and then perhaps by forcing thoſe Letters… … Wiktionary
Separable states — In quantum mechanics, separable quantum states are states without quantum entanglement. Separable pure states For simplicity, the following assumes all relevant state spaces are finite dimensional. First, consider separability for pure states.… … Wikipedia
Separable sigma algebra — In mathematics, sigma; algebras are usually studied in the context of measure theory. A separable sigma; algebra (or separable sigma; field) is a sigma algebra that can be generated by a countable collection of sets. To learn what is meant by the … Wikipedia
Space (mathematics) — This article is about mathematical structures called spaces. For space as a geometric concept, see Euclidean space. For all other uses, see space (disambiguation). A hierarchy of mathematical spaces: The inner product induces a norm. The norm… … Wikipedia
separable — adjective a) Able to be separated. b) Of a metric space, that it has a countable dense subset. Ant: inseparable See Also: separability … Wiktionary
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia
Second-countable space — In topology, a second countable space, also called a completely separable space, is a topological space satisfying the second axiom of countability. A space is said to be second countable if its topology has a countable base. More explicitly,… … Wikipedia
Metric space — In mathematics, a metric space is a set where a notion of distance (called a metric) between elements of the set is defined. The metric space which most closely corresponds to our intuitive understanding of space is the 3 dimensional Euclidean… … Wikipedia
Sobolev space — In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of Lp norms of the function itself as well as its derivatives up to a given order. The derivatives are understood in a suitable weak sense… … Wikipedia