self-dual tensor

self-dual tensor
мат. самодвойственный тензор

Большой англо-русский и русско-английский словарь. 2001.

Игры ⚽ Поможем решить контрольную работу

Смотреть что такое "self-dual tensor" в других словарях:

  • Self-creation cosmology — (SCC) theories are gravitational theories in which the mass of the universe is created out of its self contained gravitational and scalar fields, as opposed to the theory of continuous creation cosmology or the steady state theory which depend on …   Wikipedia

  • Tensor field — In mathematics, physics and engineering, a tensor field is a very general concept of variable geometric quantity. It is used in differential geometry and the theory of manifolds, in algebraic geometry, in general relativity, in the analysis of… …   Wikipedia

  • Hodge dual — In mathematics, the Hodge star operator or Hodge dual is a significant linear map introduced in general by W. V. D. Hodge. It is defined on the exterior algebra of a finite dimensional oriented inner product space. Contents 1 Dimensions and… …   Wikipedia

  • Weyl tensor — In differential geometry, the Weyl curvature tensor, named after Hermann Weyl, is a measure of the curvature of spacetime or, more generally, a pseudo Riemannian manifold. Like the Riemann curvature tensor, the Weyl tensor expresses the tidal… …   Wikipedia

  • Gravitational instanton — In mathematical physics and differential geometry, a gravitational instanton is a four dimensional complete Riemannian manifold satisfying the vacuum Einstein equations. They are so named because they are analogues in quantum theories of gravity… …   Wikipedia

  • Weinberg-Witten theorem — Steven Weinberg and Edward Witten consider the so called emergent theories to be misguided. During the 80 s, preon theories, technicolor and the like were very popular and some people were speculating that gravity might be an emergent phenomena… …   Wikipedia

  • Petrov classification — In differential geometry and theoretical physics, the Petrov classification describes the possible algebraic symmetries of the Weyl tensor at each event in a Lorentzian manifold.It is most often applied in studying exact solutions of Einstein s… …   Wikipedia

  • Tetrahedron — For the academic journal, see Tetrahedron (journal). Regular Tetrahedron (Click here for rotating model) Type Platonic solid Elements F = 4, E = 6 V = 4 (χ = 2) Faces by s …   Wikipedia

  • Frobenius-Schur indicator — In mathematics the Schur indicator, named after Issai Schur, or Frobenius Schur indicator describes what invariant bilinear forms a given irreducible representation of a compact group on a complex vector space has, and can be used to classify the …   Wikipedia

  • Ricci decomposition — In semi Riemannian geometry, the Ricci decomposition is a way of breaking up the Riemann curvature tensor of a pseudo Riemannian manifold into pieces with useful individual algebraic properties. This decomposition is of fundamental importance in… …   Wikipedia

  • Einstein manifold — In differential geometry and mathematical physics, an Einstein manifold is a Riemannian or pseudo Riemannian manifold whose Ricci tensor is proportional to the metric. They are named after Albert Einstein because this condition is equivalent to… …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»