- scalar part
- мат. скалярная часть (оператора)
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Scalar (mathematics) — In linear algebra, real numbers are called scalars and relate to vectors in a vector space through the operation of scalar multiplication, in which a vector can be multiplied by a number to produce another vector.More generally, the scalars… … Wikipedia
Scalar theories of gravitation — are field theories of gravitation in which the gravitational field is described using a scalar field, which is required to satisfy some field equation. Note: This article focuses on relativistic classical field theories of gravitation. The best… … Wikipedia
Scalar field theory (pseudoscience) — For the quantum mechanical scalar field theory which is a field theory of spinless particles, see Scalar field theory Scalar field theory (SFT) is a set of theories in a model which posits that there is a basic mechanism that produces the… … Wikipedia
Scalar field theory — In theoretical physics, scalar field theory can refer to a classical or quantum theory of scalar fields. A field which is invariant under any Lorentz transformation is called a scalar , in contrast to a vector or tensor field. The quanta of the… … Wikipedia
Scalar-vector-tensor decomposition — In cosmological perturbation theory, the scalar vector tensor decomposition is a decomposition of the most general linearized s of the Friedmann Robertson Walker metric into components according to their transformations under spatial rotations.… … Wikipedia
Kretschmann scalar — In the theory of Lorentzian manifolds, particularly in the context of applications to general relativity, the Kretschmann scalar is a quadratic scalar invariant. It was introduced by Erich Kretschmann. DefinitionThe Kretschmann invariant is: K =… … Wikipedia
Classical Hamiltonian quaternions — For the history of quaternions see:history of quaternions For a more general treatment of quaternions see:quaternions William Rowan Hamilton invented quaternions, a mathematical entity in 1843. This article describes Hamilton s original treatment … Wikipedia
Euclidean vector — This article is about the vectors mainly used in physics and engineering to represent directed quantities. For mathematical vectors in general, see Vector (mathematics and physics). For other uses, see vector. Illustration of a vector … Wikipedia
Cross product — This article is about the cross product of two vectors in three dimensional Euclidean space. For other uses, see Cross product (disambiguation). In mathematics, the cross product, vector product, or Gibbs vector product is a binary operation on… … Wikipedia
Quaternion — Quaternions, in mathematics, are a non commutative extension of complex numbers. They were first described by the Irish mathematician Sir William Rowan Hamilton in 1843 and applied to mechanics in three dimensional space. They find uses in both… … Wikipedia
History of quaternions — This article is an indepth story of the history of quaternions. It tells the story of who and when. To find out what quaternions are see quaternions and to learn about historical quaternion notation of the 19th century see classical quaternions… … Wikipedia