residue theorem
Смотреть что такое "residue theorem" в других словарях:
Residue theorem — The residue theorem in complex analysis is a powerful tool to evaluate line integrals of analytic functions over closed curves and can often be used to compute real integrals as well. It generalizes the Cauchy integral theorem and Cauchy s… … Wikipedia
Residue (complex analysis) — In mathematics, more specifically complex analysis, the residue is a complex number proportional to the contour integral of a meromorphic function along a path enclosing one of its singularities. (More generally, residues can be calculated for… … Wikipedia
Residue number system — A residue number system (RNS) represents a large integer using a set of smaller integers, so that computation may be performed more efficiently. It relies on the Chinese remainder theorem of modular arithmetic for its operation, a mathematical… … Wikipedia
Cauchy's integral theorem — In mathematics, the Cauchy integral theorem in complex analysis, named after Augustin Louis Cauchy, is an important statement about line integrals for holomorphic functions in the complex plane. Essentially, it says that if two different paths… … Wikipedia
Rouché's theorem — In mathematics, especially complex analysis, Rouché s theorem tells us that if the complex valued functions f and g are holomorphic inside and on some closed contour C , with | g ( z )| < | f ( z )| on C , then f and f + g have the same number of … Wikipedia
Quadratic residue — In number theory, an integer q is called a quadratic residue modulo n if it is congruent to a perfect square modulo n; i.e., if there exists an integer x such that: Otherwise, q is called a quadratic nonresidue modulo n. Originally an abstract… … Wikipedia
Chebotarev's density theorem — in algebraic number theory describes statistically the splitting of primes in a given Galois extension K of the field Q of rational numbers. Generally speaking, a prime integer will factor into several ideal primes in the ring of algebraic… … Wikipedia
Ax–Kochen theorem — The Ax–Kochen theorem, named for James Ax and Simon B. Kochen, states that for each positive integer d there is a finite set Yd of prime numbers, such that if p is any prime not in Yd then every homogeneous polynomial of degree d over the p adic… … Wikipedia
Norm residue isomorphism theorem — In the mathematical field of algebraic K theory, the norm residue isomorphism theorem is a long sought result whose complete proof was announced in 2009. It previously was known as the Bloch–Kato conjecture, after Spencer Bloch and Kazuya Kato,… … Wikipedia
Wiener-Ikehara theorem — The Wiener Ikehara theorem can be used to prove the prime number theorem or PNT (Chandrasekharan, 1969). It was proved by Norbert Wiener and his student Shikao Ikehara in 1932. It is an example of a Tauberian theorem. Statement Let A ( x ) be a… … Wikipedia
Prime number theorem — PNT redirects here. For other uses, see PNT (disambiguation). In number theory, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers. The prime number theorem gives a general description of how the primes are… … Wikipedia