residue field
Смотреть что такое "residue field" в других словарях:
Residue field — In mathematics, the residue field is a basic construction in commutative algebra. If R is a commutative ring and m is a maximal ideal, then the residue field is the quotient ring k = R / m , which is a field. Frequently, R is a local ring and m… … Wikipedia
Residue number system — A residue number system (RNS) represents a large integer using a set of smaller integers, so that computation may be performed more efficiently. It relies on the Chinese remainder theorem of modular arithmetic for its operation, a mathematical… … Wikipedia
Field extension — In abstract algebra, field extensions are the main object of study in field theory. The general idea is to start with a base field and construct in some manner a larger field which contains the base field and satisfies additional properties. For… … Wikipedia
Field norm — In mathematics, the (field) norm is a mapping defined in field theory, to map elements of a larger field into a smaller one. Contents 1 Formal definitions 2 Example 3 Further properties 4 See also … Wikipedia
Residue — any organic matter left as residue, such as agricultural and forestry residue, including, but not limited to, conifer thinnings, dead and dying trees, commercial hardwood, noncommercial hardwoods and softwoods, chaparral, burn, mill,… … Energy terms
Local field — In mathematics, a local field is a special type of field that is a locally compact topological field with respect to a non discrete topology.[1] Given such a field, an absolute value can be defined on it. There are two basic types of local field … Wikipedia
p-adically closed field — In mathematics, a p adically closed field is a field that enjoys a closure property that is a close analogue for p adic fields to what real closure is to the real field. They were introduced by James Ax and Simon B. Kochen in 1965.[1] Contents 1… … Wikipedia
Algebraic number field — In mathematics, an algebraic number field (or simply number field) F is a finite (and hence algebraic) field extension of the field of rational numbers Q. Thus F is a field that contains Q and has finite dimension when considered as a vector… … Wikipedia
Quasi-finite field — In mathematics, a quasi finite field is a generalisation of a finite field. Standard local class field theory usually deals with complete fields whose residue field is finite , but the theory applies equally well when the residue field is only… … Wikipedia
Quasi-algebraically closed field — In mathematics, a field F is called quasi algebraically closed (or C1) if for every non constant homogeneous polynomial P over F has a non trivial zero provided the number of its variables is more than its degree. In other words, if P is a non… … Wikipedia
Conductor (class field theory) — In algebraic number theory, the conductor of a finite abelian extension of local or global fields provides a quantitative measure of the ramification in the extension. The definition of the conductor is related to the Artin map. Contents 1 Local… … Wikipedia