- recursive arithmetic
- мат. рекурсивная арифметика
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Primitive recursive arithmetic — Primitive recursive arithmetic, or PRA, is a quantifier free formalization of the natural numbers. It was first proposed by Skolem [Thoralf Skolem (1923) The foundations of elementary arithmetic in Jean van Heijenoort, translator and ed. (1967)… … Wikipedia
Recursive set — In computability theory, a set of natural numbers is called recursive, computable or decidable if there is an algorithm which terminates after a finite amount of time and correctly decides whether or not a given number belongs to the set. A more… … Wikipedia
Recursive languages and sets — This article is a temporary experiment to see whether it is feasible and desirable to merge the articles Recursive set, Recursive language, Decidable language, Decidable problem and Undecidable problem. Input on how best to do this is very much… … Wikipedia
Recursive type — In computer programming languages, a recursive type is a data type for values that may contain other values of the same type.An example is the list type, in Haskell: data List a = Nil | Cons a (List a) This indicates that a list of a s is either… … Wikipedia
Second-order arithmetic — In mathematical logic, second order arithmetic is a collection of axiomatic systems that formalize the natural numbers and sets thereof. It is an alternative to axiomatic set theory as a foundation for much, but not all, of mathematics. The… … Wikipedia
Robinson arithmetic — In mathematics, Robinson arithmetic, or Q, is a finitely axiomatized fragment of Peano arithmetic (PA), first set out in Robinson (1950). Q is essentially PA without the axiom schema of induction. Even though Q is much weaker than PA, it is still … Wikipedia
Primitive recursive function — The primitive recursive functions are defined using primitive recursion and composition as central operations and are a strict subset of the recursive functions (recursive functions are also known as computable functions). The term was coined by… … Wikipedia
Arbitrary-precision arithmetic — In computer science, arbitrary precision arithmetic indicates that calculations are performed on numbers whose digits of precision are limited only by the available memory of the host system. This contrasts with the faster fixed precision… … Wikipedia
Computability theory — For the concept of computability, see Computability. Computability theory, also called recursion theory, is a branch of mathematical logic that originated in the 1930s with the study of computable functions and Turing degrees. The field has grown … Wikipedia
Recursion theory — Recursion theory, also called computability theory, is a branch of mathematical logic that originated in the 1930s with the study of computable functions and Turing degrees. The field has grown to include the study of generalized computability… … Wikipedia
Gödel's incompleteness theorems — In mathematical logic, Gödel s incompleteness theorems, proved by Kurt Gödel in 1931, are two theorems stating inherent limitations of all but the most trivial formal systems for arithmetic of mathematical interest. The theorems are of… … Wikipedia