- rational manifold
- мат. рациональное многообразие
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Rational homotopy theory — In mathematics, rational homotopy theory is the study of the rational homotopy type of a space, which means roughly that one ignores all torsion in the homotopy groups. It was started by Dennis Sullivan (1977) and Daniel Quillen (1969) … Wikipedia
Mazur manifold — In differential topology, a branch of mathematics, a Mazur manifold is a contractible, compact, smooth 4 dimensional manifold which is not diffeomorphic to the standard 4 ball. The boundary of a Mazur manifold is necessarily a homology 3 sphere.… … Wikipedia
Critique of Pure Reason — Part of a series on Immanuel … Wikipedia
Algebraic curve — In algebraic geometry, an algebraic curve is an algebraic variety of dimension one. The theory of these curves in general was quite fully developed in the nineteenth century, after many particular examples had been considered, starting with… … Wikipedia
Hodge conjecture — The Hodge conjecture is a major unsolved problem in algebraic geometry which relates the algebraic topology of a non singular complex algebraic variety and the subvarieties of that variety. More specifically, the conjecture says that certain de… … Wikipedia
Christianity — /kris chee an i tee/, n., pl. Christianities. 1. the Christian religion, including the Catholic, Protestant, and Eastern Orthodox churches. 2. Christian beliefs or practices; Christian quality or character: Christianity mixed with pagan elements; … Universalium
Idealism (italian) and after — Italian idealism and after Gentile, Croce and others Giacomo Rinaldi INTRODUCTION The history of twentieth century Italian philosophy is strongly influenced both by the peculiar character of its evolution in the preceding century and by… … History of philosophy
Riemann sphere — The Riemann sphere can be visualized as the complex number plane wrapped around a sphere (by some form of stereographic projection – details are given below). In mathematics, the Riemann sphere (or extended complex plane), named after the 19th… … Wikipedia
Enriques-Kodaira classification — In mathematics, the Enriques Kodaira classification is a classification of compact complex surfaces. For complex projective surfaces it was done by Federigo Enriques, and Kunihiko Kodaira later extended it to non algebraic compact surfaces. It… … Wikipedia
mathematics — /math euh mat iks/, n. 1. (used with a sing. v.) the systematic treatment of magnitude, relationships between figures and forms, and relations between quantities expressed symbolically. 2. (used with a sing. or pl. v.) mathematical procedures,… … Universalium
nature, philosophy of — Introduction the discipline that investigates substantive issues regarding the actual features of nature as a reality. The discussion here is divided into two parts: the philosophy of physics and the philosophy of biology. In this… … Universalium