ramification field

ramification field
мат. поле ветвления

Большой англо-русский и русско-английский словарь. 2001.

Игры ⚽ Нужно решить контрольную?

Смотреть что такое "ramification field" в других словарях:

  • Ramification — In mathematics, ramification is a geometric term used for branching out , in the way that the square root function, for complex numbers, can be seen to have two branches differing in sign. It is also used from the opposite perspective (branches… …   Wikipedia

  • Ramification theory of valuations — In mathematics, the ramification theory of valuations studies the set of extensions of a valuation v of a field K to an extension L of K. It is a generalization of the ramification theory of Dedekind domains. Contents 1 Galois case 1.1… …   Wikipedia

  • Algebraic number field — In mathematics, an algebraic number field (or simply number field) F is a finite (and hence algebraic) field extension of the field of rational numbers Q. Thus F is a field that contains Q and has finite dimension when considered as a vector… …   Wikipedia

  • Conductor (class field theory) — In algebraic number theory, the conductor of a finite abelian extension of local or global fields provides a quantitative measure of the ramification in the extension. The definition of the conductor is related to the Artin map. Contents 1 Local… …   Wikipedia

  • Discriminant of an algebraic number field — A fundamental domain of the ring of integers of the field K obtained from Q by adjoining a root of x3 − x2 − 2x + 1. This fundamental domain sits inside K ⊗QR. The discriminant of K is 49 = 72.… …   Wikipedia

  • Quadratic field — In algebraic number theory, a quadratic field is an algebraic number field K of degree two over Q. It is easy to show that the map d ↦ Q(√d) is a bijection from the set of all square free integers d ≠ 0, 1 to the set of… …   Wikipedia

  • p-adically closed field — In mathematics, a p adically closed field is a field that enjoys a closure property that is a close analogue for p adic fields to what real closure is to the real field. They were introduced by James Ax and Simon B. Kochen in 1965.[1] Contents 1… …   Wikipedia

  • Hilbert class field — In algebraic number theory, the Hilbert class field E of a number field K is the maximal abelian unramified extension of K . Its degree over K equals the class number of K and the Galois group of E over K is canonically isomorphic to the ideal… …   Wikipedia

  • Splitting of prime ideals in Galois extensions — In mathematics, the interplay between the Galois group G of a Galois extension L of a number field K, and the way the prime ideals P of the ring of integers OK factorise as products of prime ideals of OL, provides one of the richest parts of… …   Wikipedia

  • Galois module — In mathematics, a Galois module is a G module where G is the Galois group of some extension of fields. The term Galois representation is frequently used when the G module is a vector space over a field or a free module over a ring, but can also… …   Wikipedia

  • Different ideal — In algebraic number theory, the different ideal (sometimes simply the different) is defined to account for the (possible) lack of duality in the ring of integers of an algebraic number field K, with respect to the field trace. It was introduced… …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»