quotient norm
Смотреть что такое "quotient norm" в других словарях:
Quotient space (linear algebra) — In linear algebra, the quotient of a vector space V by a subspace N is a vector space obtained by collapsing N to zero. The space obtained is called a quotient space and is denoted V / N (read V mod N ). Definition Formally, the construction is… … Wikipedia
Norm (mathematics) — This article is about linear algebra and analysis. For field theory, see Field norm. For ideals, see Norm of an ideal. For group theory, see Norm (group). For norms in descriptive set theory, see prewellordering. In linear algebra, functional… … Wikipedia
Quotient of subspace theorem — The quotient of subspace theorem is an important property of finite dimensional normed spaces, discovered by Vitali Milman.Let (X, | cdot |) be an N dimensional normed space. There exist subspaces Z subset Y subset X such that the following holds … Wikipedia
Ideal norm — In commutative algebra, the norm of an ideal is a generalization of a norm of an element in the field extension. It is particularly important in number theory since it measures the size of an ideal of a complicated number ring in terms of an… … Wikipedia
intelligence quotient — ► NOUN ▪ a number representing a person s reasoning ability, compared to the statistical norm, 100 being average … English terms dictionary
intelligence quotient — (abbrev.: IQ) noun a number representing a person s reasoning ability, compared to the statistical norm, 100 being average … English new terms dictionary
Spectral theory of compact operators — In functional analysis, compact operators are linear operators that map bounded sets to precompact ones. Compact operators acting on a Hilbert space H is the closure of finite rank operators in the uniform operator topology. In general, operators … Wikipedia
Gelfand-Naimark-Segal construction — In functional analysis, given a C* algebra A , the Gelfand Naimark Segal construction establishes a correspondence between cyclic * representations of A and certain linear functionals on A (called states ). The correspondence is shown by an… … Wikipedia
Ideal (ring theory) — In ring theory, a branch of abstract algebra, an ideal is a special subset of a ring. The ideal concept allows the generalization in an appropriate way of some important properties of integers like even number or multiple of 3 . For instance, in… … Wikipedia
Classical Hamiltonian quaternions — For the history of quaternions see:history of quaternions For a more general treatment of quaternions see:quaternions William Rowan Hamilton invented quaternions, a mathematical entity in 1843. This article describes Hamilton s original treatment … Wikipedia
Vector space — This article is about linear (vector) spaces. For the structure in incidence geometry, see Linear space (geometry). Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is… … Wikipedia