- quaternionic matrix
- мат. кватернионная матрица
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Quaternionic representation — In mathematical field of representation theory, a quaternionic representation is a representation on a complex vector space V with an invariant quaternionic structure, i.e., an antilinear equivariant map:jcolon V o V, which satisfies:j^2=… … Wikipedia
Random matrix — In probability theory and mathematical physics, a random matrix is a matrix valued random variable. Many important properties of physical systems can be represented mathematically as matrix problems. For example, the thermal conductivity of a… … Wikipedia
Moore matrix — In linear algebra, a Moore matrix, introduced by E. H. Moore (1896), is a matrix defined over a finite field. When it is a square matrix its determinant is called a Moore determinant (this is unrelated to the Moore determinant of a… … Wikipedia
Moore determinant of a Hermitian matrix — Not to be confused with Moore determinant over a finite field. In mathematics, the Moore determinant is a determinant defined for Hermitian matrices over a quaternion algebra, introduced by Moore (1922). See also Dieudonné determinant… … Wikipedia
Spinor — In mathematics and physics, in particular in the theory of the orthogonal groups (such as the rotation or the Lorentz groups), spinors are elements of a complex vector space introduced to expand the notion of spatial vector. Unlike tensors, the… … Wikipedia
3-sphere — Stereographic projection of the hypersphere s parallels (red), meridians (blue) and hypermeridians (green). Because this projection is conformal, the curves intersect each other orthogonally (in the yellow points) as in 4D. All curves are circles … Wikipedia
Symplectic group — For finite groups with all characteristc abelian subgroups cyclic, see group of symplectic type. Group theory … Wikipedia
Quaternion — Quaternions, in mathematics, are a non commutative extension of complex numbers. They were first described by the Irish mathematician Sir William Rowan Hamilton in 1843 and applied to mechanics in three dimensional space. They find uses in both… … Wikipedia
Split-quaternion — Coquaternion multiplication × 1 i j k 1 1 i j k i i −1 k −j j j −k +1 −i … Wikipedia
Mathematics of radio engineering — A complex valued function. The mathematics of radio engineering is a pleasant and very useful subject. This article is an attempt to provide a reasonably comprehensive summary of this almost limitless topic. While the ideas have historically… … Wikipedia
Biquaternion — In abstract algebra, the biquaternions are the numbers where w, x, y, and z are complex numbers and the elements of {1, i, j, k} multiply as in the quaternion group. As there are three types of complex number, so there are three types of… … Wikipedia