pure epimorphism
Смотреть что такое "pure epimorphism" в других словарях:
Abelian category — In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototype example of an abelian category is the category of… … Wikipedia
Normal morphism — In category theory and its applications to mathematics, a normal monomorphism or conormal epimorphism is a particularly well behaved type of morphism. A normal category is a category in which every monomorphism is normal. A conormal category is… … Wikipedia
List of important publications in mathematics — One of the oldest surviving fragments of Euclid s Elements, found at Oxyrhynchus and dated to circa AD 100. The diagram accompanies Book II, Proposition 5.[1] This is a list of important publications in mathematics, organized by field. Some… … Wikipedia
Coimage — In algebra, the coimage of a homomorphism f: A → B is the quotient coim f = A/ker f of domain and kernel. The coimage is canonically isomorphic to the image by the first isomorphism theorem, when that theorem applies. More generally, in … Wikipedia
Glossary of category theory — This is a glossary of properties and concepts in category theory in mathematics.CategoriesA category A is said to be: * small provided that the class of all morphisms is a set (i.e., not a proper class); otherwise large. * locally small provided… … Wikipedia
Serial module — Chain ring redirects here. For the bicycle part, see Chainring. In abstract algebra, a uniserial module M is a module over a ring R, whose submodules are totally ordered by inclusion. This means simply that for any two submodules N1 and N2 of M,… … Wikipedia
Flat module — In abstract algebra, a flat module over a ring R is an R module M such that taking the tensor product over R with M preserves exact sequences.Vector spaces over a field are flat modules. Free modules, or more generally projective modules, are… … Wikipedia
List of abstract algebra topics — Abstract algebra is the subject area of mathematics that studies algebraic structures, such as groups, rings, fields, modules, vector spaces, and algebras. The phrase abstract algebra was coined at the turn of the 20th century to distinguish this … Wikipedia
Embedding problem — In Galois theory, a branch of mathematics, the embedding problem is a generalization of the inverse Galois problem. Roughly speaking, it asks whether a given Galois extension can be embedded into a Galois extension in such a way that the… … Wikipedia