punctured sphere
Смотреть что такое "punctured sphere" в других словарях:
Alexander horned sphere — The Alexander horned sphere is one of the most famous pathological examples in mathematics discovered in 1924 by J. W. Alexander. It is the particular embedding of a sphere in 3 dimensional Euclidean space obtained by the following construction,… … Wikipedia
Isomonodromic deformation — In mathematics, the equations governing the isomonodromic deformation of meromorphic linear systems of ordinary differential equations are, in a fairly precise sense, the most fundamental exact nonlinear differential equations. As a result, their … Wikipedia
Riemann surface — For the Riemann surface of a subring of a field, see Zariski–Riemann space. Riemann surface for the function ƒ(z) = √z. The two horizontal axes represent the real and imaginary parts of z, while the vertical axis represents the real… … Wikipedia
Complex plane — Geometric representation of z and its conjugate in the complex plane. The distance along the light blue line from the origin to the point z is the modulus or absolute value of z. The angle φ is the argument of z. In mathematics … Wikipedia
Torus — Not to be confused with Taurus (disambiguation). This article is about the surface and mathematical concept of a torus. For other uses, see Torus (disambiguation). A torus As the distance to th … Wikipedia
List of Chinese inventions — A bronze Chinese crossbow mechanism with a buttplate (the wooden components have … Wikipedia
United Kingdom — a kingdom in NW Europe, consisting of Great Britain and Northern Ireland: formerly comprising Great Britain and Ireland 1801 1922. 58,610,182; 94,242 sq. mi. (244,100 sq. km). Cap.: London. Abbr.: U.K. Official name, United Kingdom of Great… … Universalium
Homotopy groups of spheres — In the mathematical field of algebraic topology, the homotopy groups of spheres describe how spheres of various dimensions can wrap around each other. They are examples of topological invariants, which reflect, in algebraic terms, the structure… … Wikipedia
De Rham cohomology — For Grothendieck s algebraic de Rham cohomology see Crystalline cohomology. In mathematics, de Rham cohomology (after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic… … Wikipedia
Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… … Wikipedia
Mir — This article is about the Soviet/Russian space station. For other uses, see Mir (disambiguation). Mir … Wikipedia