pseudo-riemannian
Смотреть что такое "pseudo-riemannian" в других словарях:
Pseudo-Riemannian manifold — In differential geometry, a pseudo Riemannian manifold (also called a semi Riemannian manifold) is a generalization of a Riemannian manifold. It is one of many things named after Bernhard Riemann. The key difference between the two is that on a… … Wikipedia
pseudo-Riemannian manifold — noun in differential geometry, a generalization of a Riemannian manifold Syn: semi Riemannian manifold … Wiktionary
Riemannian manifold — In Riemannian geometry, a Riemannian manifold ( M , g ) (with Riemannian metric g ) is a real differentiable manifold M in which each tangent space is equipped with an inner product g in a manner which varies smoothly from point to point. The… … Wikipedia
Riemannian geometry — Elliptic geometry is also sometimes called Riemannian geometry. Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a Riemannian metric , i.e. with an inner product on the tangent… … Wikipedia
Pseudo-Euclidean space — A pseudo Euclidean space is a finite dimensional real vector space together with a non degenerate indefinite quadratic form. Such a quadratic form can, after a change of coordinates, be written as : q(x) = left(x 1^2+cdots + x k^2 ight) left(x… … Wikipedia
Pseudo-Riemannsche Mannigfaltigkeit — Eine pseudo riemannsche Mannigfaltigkeit oder semi riemannsche Mannigfaltigkeit ist ein mathematisches Objekt aus der (pseudo ) riemannschen Geometrie. Sie ist eine Verallgemeinerung der schon früher definierten riemannschen Mannigfaltigkeit und… … Deutsch Wikipedia
Curvature of Riemannian manifolds — In mathematics, specifically differential geometry, the infinitesimal geometry of Riemannian manifolds with dimension at least 3 is too complicated to be described by a single number at a given point. Riemann introduced an abstract and rigorous… … Wikipedia
Fundamental theorem of Riemannian geometry — In Riemannian geometry, the fundamental theorem of Riemannian geometry states that on any Riemannian manifold (or pseudo Riemannian manifold) there is a unique torsion free metric connection, called the Levi Civita connection of the given metric … Wikipedia
Isometry (Riemannian geometry) — In the study of Riemannian geometry in mathematics, a local isometry from one (pseudo )Riemannian manifold to another is a map which pulls back the metric tensor on the second manifold to the metric tensor on the first. When such a map is also a… … Wikipedia
Geodesic — [ great circle arcs.] In mathematics, a geodesic IPA|/ˌdʒiəˈdɛsɪk, ˈdisɪk/ [jee uh des ik, dee sik] is a generalization of the notion of a straight line to curved spaces . In presence of a metric, geodesics are defined to be (locally) the… … Wikipedia
Exponential map — In differential geometry, the exponential map is a generalization of the ordinary exponential function of mathematical analysis to all differentiable manifolds with an affine connection. Two important special cases of this are the exponential map … Wikipedia