- projective-geometrical invariant
- мат. проективно-геометрический инвариант
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Geometric invariant theory — In mathematics Geometric invariant theory (or GIT) is a method for constructing quotients by group actions in algebraic geometry, used to construct moduli spaces. It was developed by David Mumford in 1965, using ideas from the paper… … Wikipedia
Differential invariant — In mathematics, a differential invariant is an invariant for the action of a Lie group on a space that involves the derivatives of graphs of functions in the space. Differential invariants are fundamental in projective differential geometry, and… … Wikipedia
Orbifold — This terminology should not be blamed on me. It was obtained by a democratic process in my course of 1976 77. An orbifold is something with many folds; unfortunately, the word “manifold” already has a different definition. I tried “foldamani”,… … Wikipedia
Lie sphere geometry — is a geometrical theory of planar or spatial geometry in which the fundamental concept is the circle or sphere. It was introduced by Sophus Lie in the nineteenth century. [The definitive modern textbook on Lie sphere geometry is Harvnb|Cecil|1992 … Wikipedia
Erlangen program — An influential research program and manifesto was published in 1872 by Felix Klein, under the title Vergleichende Betrachtungen über neuere geometrische Forschungen . This Erlangen Program ( Erlanger Programm ) mdash; Klein was then at Erlangen… … Wikipedia
Parity (physics) — Flavour in particle physics Flavour quantum numbers: Isospin: I or I3 Charm: C Strangeness: S Topness: T Bottomness: B′ Related quantum numbers: Baryon number: B Lepton number: L Weak isospin: T or T3 Electric charge: Q … Wikipedia
Manifold — For other uses, see Manifold (disambiguation). The sphere (surface of a ball) is a two dimensional manifold since it can be represented by a collection of two dimensional maps. In mathematics (specifically in differential geometry and topology),… … Wikipedia
Geometry — (Greek γεωμετρία ; geo = earth, metria = measure) is a part of mathematics concerned with questions of size, shape, and relative position of figures and with properties of space. Geometry is one of the oldest sciences. Initially a body of… … Wikipedia
mathematics — /math euh mat iks/, n. 1. (used with a sing. v.) the systematic treatment of magnitude, relationships between figures and forms, and relations between quantities expressed symbolically. 2. (used with a sing. or pl. v.) mathematical procedures,… … Universalium
Riemann surface — For the Riemann surface of a subring of a field, see Zariski–Riemann space. Riemann surface for the function ƒ(z) = √z. The two horizontal axes represent the real and imaginary parts of z, while the vertical axis represents the real… … Wikipedia
Cartan connection — In the mathematical field of differential geometry, a Cartan connection is a flexible generalization of the notion of an affine connection. It may also be regarded as a specialization of the general concept of a principal connection, in which the … Wikipedia