- principle of extensionality
- мат. принцип экстенсиональности
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
extensionality — noun a) The principle that objects are equal if and only if their observed properties are the same, regardless of internal processes that lead to those properties. b) The principle that functions are equal if and only if they operate on the same… … Wiktionary
formal logic — the branch of logic concerned exclusively with the principles of deductive reasoning and with the form rather than the content of propositions. [1855 60] * * * Introduction the abstract study of propositions, statements, or assertively used … Universalium
Nominalism — is a metaphysical view in philosophy according to which general or abstract terms and predicates exist, while universals or abstract objects, which are sometimes thought to correspond to these terms, do not exist.[1] Thus, there are at least two… … Wikipedia
Empty set — ∅ redirects here. For similar looking symbols, see Ø (disambiguation). The empty set is the set containing no elements. In mathematics, and more specifically set theory, the empty set is the unique set having no elements; its size or cardinality… … Wikipedia
set — Intuitively a set is a collection of entities, called its members or elements, itself considered as a single object. The fundamental principle of the theory of sets is the principle of extensionality : sets are identical if and only if they have… … Philosophy dictionary
Mereology — In philosophy and mathematical logic, mereology (from the Greek μέρος, root: μερε(σ) , part and the suffix logy study, discussion, science ) treats parts and the wholes they form. Whereas set theory is founded on the membership relation between a … Wikipedia
Zermelo–Fraenkel set theory — Zermelo–Fraenkel set theory, with the axiom of choice, commonly abbreviated ZFC, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics.ZFC consists of a single primitive ontological notion, that of… … Wikipedia
Scott–Potter set theory — An approach to the foundations of mathematics that is of relatively recent origin, Scott–Potter set theory is a collection of nested axiomatic set theories set out by the philosopher Michael Potter, building on earlier work by the mathematician… … Wikipedia
Von Neumann–Bernays–Gödel set theory — In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of the canonical axiomatic set theory ZFC. A statement in the language of ZFC is provable in NBG if and only … Wikipedia
Occam's razor — For the aerial theatre company, see Ockham s Razor Theatre Company. It is possible to describe the other planets in the solar system as revolving around the Earth, but that explanation is unnecessarily complex compared to the modern consensus… … Wikipedia
First-order logic — is a formal logical system used in mathematics, philosophy, linguistics, and computer science. It goes by many names, including: first order predicate calculus, the lower predicate calculus, quantification theory, and predicate logic (a less… … Wikipedia