principal ultraproduct

principal ultraproduct
мат. главное ультрапроизведение

Большой англо-русский и русско-английский словарь. 2001.

Игры ⚽ Нужно решить контрольную?

Смотреть что такое "principal ultraproduct" в других словарях:

  • Ultraproduct — An ultraproduct is a mathematical construction, of which the ultrapower (defined below) is a special case. Ultraproducts are used in abstract algebra to construct new fields from given ones, and in model theory, a branch of mathematical logic. In …   Wikipedia

  • Field (mathematics) — This article is about fields in algebra. For fields in geometry, see Vector field. For other uses, see Field (disambiguation). In abstract algebra, a field is a commutative ring whose nonzero elements form a group under multiplication. As such it …   Wikipedia

  • Pseudo algebraically closed field — In mathematics, a field K is pseudo algebraically closed (usually abbreviated by PAC) if one of the following equivalent conditions holds:*Each absolutely irreducible variety V defined over K has a K rational point. *Each absolutely irreducible… …   Wikipedia

  • Ultrafilter — In the mathematical field of set theory, an ultrafilter on a set X is a collection of subsets of X that is a filter, that cannot be enlarged (as a filter). An ultrafilter may be considered as a finitely additive measure. Then every subset of X is …   Wikipedia

  • Non-standard model of arithmetic — In mathematical logic, a nonstandard model of arithmetic is a model of (first order) Peano arithmetic that contains nonstandard numbers. The standard model of arithmetic consists of the set of standard natural numbers {0, 1, 2, …}. The elements… …   Wikipedia

  • Ultralimit — For the direct limit of a sequence of ultrapowers, see Ultraproduct. In mathematics, an ultralimit is a geometric construction that assigns to a sequence of metric spaces Xn a limiting metric space. The notion of an ultralimit captures the… …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»