p-adic cohomology

p-adic cohomology
мат. p-адическая когомология

Большой англо-русский и русско-английский словарь. 2001.

Игры ⚽ Нужно решить контрольную?

Смотреть что такое "p-adic cohomology" в других словарях:

  • Étale cohomology — In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil… …   Wikipedia

  • p-adic Hodge theory — In mathematics, p adic Hodge theory is a theory that provides a way to classify and study p adic Galois representations of characteristic 0 local fields[1] with residual characteristic p (such as Qp). The theory has its beginnings in Jean Pierre… …   Wikipedia

  • Crystalline cohomology — In mathematics, crystalline cohomology is a Weil cohomology theory for schemes introduced by Alexander Grothendieck (1966, 1968) and developed by Pierre Berthelot (1974). Its values are modules over rings of Witt vectors over the base… …   Wikipedia

  • Weil cohomology theory — In algebraic geometry, a subfield of mathematics, a Weil cohomology or Weil cohomology theory is a cohomology satisfying certain axioms concerning the interplay of algebraic cycles and cohomology groups. The name is in honour of André Weil. Weil… …   Wikipedia

  • List of cohomology theories — This is a list of some of the ordinary and generalized (or extraordinary) homology and cohomology theories in algebraic topology that are defined on the categories of CW complexes or spectra. For other sorts of homology theories see the links at… …   Wikipedia

  • Monsky–Washnitzer cohomology — In algebraic geometry, Monsky–Washnitzer cohomology is a p adic cohomology theory defined for non singular affine varieties over fields of positive characteristic p introduced by Monsky and Washnitzer (1968) and Monsky (1968), who were… …   Wikipedia

  • Motivic cohomology — is a cohomological theory in mathematics, the existence of which was first conjectured by Alexander Grothendieck during the 1960s. At that time, it was conceived as a theory constructed on the basis of the so called standard conjectures on… …   Wikipedia

  • Glossary of arithmetic and Diophantine geometry — This is a glossary of arithmetic and Diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of… …   Wikipedia

  • Deligne–Lusztig theory — In mathematics, Deligne–Lusztig theory is a way of constructing linear representations of finite groups of Lie type using ℓ adic cohomology with compact support, introduced by Deligne Lusztig (1976). Lusztig (1984) used these representations to… …   Wikipedia

  • Motive (algebraic geometry) — For other uses, see Motive (disambiguation). In algebraic geometry, a motive (or sometimes motif, following French usage) denotes some essential part of an algebraic variety . To date, pure motives have been defined, while conjectural mixed… …   Wikipedia

  • Galois module — In mathematics, a Galois module is a G module where G is the Galois group of some extension of fields. The term Galois representation is frequently used when the G module is a vector space over a field or a free module over a ring, but can also… …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»