orthogonal kernel
Смотреть что такое "orthogonal kernel" в других словарях:
Kernel density estimation — of 100 normally distributed random numbers using different smoothing bandwidths. In statistics, kernel density estimation is a non parametric way of estimating the probability density function of a random variable. Kernel density estimation is a… … Wikipedia
Orthogonal group — Group theory Group theory … Wikipedia
Kernel (matrix) — In linear algebra, the kernel or null space (also nullspace) of a matrix A is the set of all vectors x for which Ax = 0. The kernel of a matrix with n columns is a linear subspace of n dimensional Euclidean space.[1] The dimension… … Wikipedia
Kernel (linear operator) — Main article: Kernel (mathematics) In linear algebra and functional analysis, the kernel of a linear operator L is the set of all operands v for which L(v) = 0. That is, if L: V → W, then where 0 denotes the null vector… … Wikipedia
Empirical orthogonal functions — In statistics and signal processing, the method of empirical orthogonal function (EOF) analysis is a decomposition of a signal or data set in terms of orthogonal basis functions which are determined from the data. It is the same as performing a… … Wikipedia
Separation kernel — A separation kernel is a type of security kernel used to simulate a distributed environment. The concept was introduced by John Rushby in a 1981 paper.John Rushby, The Design and Verification of Secure Systems, Eighth ACM Symposium on Operating… … Wikipedia
Projection (linear algebra) — Orthogonal projection redirects here. For the technical drawing concept, see orthographic projection. For a concrete discussion of orthogonal projections in finite dimensional linear spaces, see vector projection. The transformation P is the… … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia
Compact operator on Hilbert space — In functional analysis, compact operators on Hilbert spaces are a direct extension of matrices: in the Hilbert spaces, they are precisely the closure of finite rank operators in the uniform operator topology. As such, results from matrix theory… … Wikipedia
Moore–Penrose pseudoinverse — In mathematics, and in particular linear algebra, a pseudoinverse A+ of a matrix A is a generalization of the inverse matrix.[1] The most widely known type of matrix pseudoinverse is the Moore–Penrose pseudoinverse, which was independently… … Wikipedia
Vector space — This article is about linear (vector) spaces. For the structure in incidence geometry, see Linear space (geometry). Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is… … Wikipedia