- orthogonal idempotents
- мат. ортогональные идемпотенты
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Idempotence — IPAEng|ˌaɪdɨmˈpoʊtəns describes the property of operations in mathematics and computer science which means that multiple applications of the operation does not change the result. The concept of idempotence arises in a number of places in abstract … Wikipedia
Pseudo-ring — In abstract algebra, a rng (also called a pseudo ring or non unital ring) is an algebraic structure satisfying the same properties as a ring, except that multiplication need not have an identity element. The term rng (pronounced rung) is meant to … Wikipedia
Classification of Clifford algebras — In mathematics, in particular in the theory of nondegenerate quadratic forms on real and complex vector spaces, the finite dimensional Clifford algebras have been completely classified in terms of isomorphisms that preserve the Clifford product.… … Wikipedia
*-algebra — * ring= In mathematics, a * ring is an associative ring with a map * : A rarr; A which is an antiautomorphism, and an involution.More precisely, * is required to satisfy the following properties: * (x + y)^* = x^* + y^* * (x y)^* = y^* x^* * 1^* … Wikipedia
Ascending chain condition on principal ideals — In abstract algebra, the ascending chain condition can be applied to the posets of principal left, principal right, or principal two sided ideals of a ring, partially ordered by inclusion. The ascending ascending chain condition on principal… … Wikipedia
Projection (linear algebra) — Orthogonal projection redirects here. For the technical drawing concept, see orthographic projection. For a concrete discussion of orthogonal projections in finite dimensional linear spaces, see vector projection. The transformation P is the… … Wikipedia
Split-complex number — A portion of the split complex number plane showing subsets with modulus zero (red), one (blue), and minus one (green). In abstract algebra, the split complex numbers (or hyperbolic numbers) are a two dimensional commutative algebra over the real … Wikipedia
Semigroup with involution — In mathematics, in semigroup theory, an involution in a semigroup is a transformation of the semigroup which is its own inverse and which is an anti automorphism of the semigroup. A semigroup in which an involution is defined is called a… … Wikipedia
Modular representation theory — is a branch of mathematics, and that part of representation theory that studies linear representations of finite group G over a field K of positive characteristic. As well as having applications to group theory, modular representations arise… … Wikipedia
Semisimple algebra — In ring theory, a semisimple algebra is an associative algebra which has trivial Jacobson radical (that is only the zero element of the algebra is in the Jacobson radical). If the algebra is finite dimensional this is equivalent to saying that it … Wikipedia
Involution (mathematics) — In mathematics, an involution, or an involutary function, is a function that is its own inverse, so that: f ( f ( x )) = x for all x in the domain of f . General propertiesAny involution is a bijection.The identity map is a trivial example of an… … Wikipedia