- oriented tangent
- мат. ориентированная касательная
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Upper tangent arc — An upper tangent arc is a halo, an atmospheric optical phenomenon which appears over and tangent to the 22° halo centred around the sun.The shape of an upper tangent arc varies with the elevation of the sun; while the sun is low (less than… … Wikipedia
Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… … Wikipedia
Lie sphere geometry — is a geometrical theory of planar or spatial geometry in which the fundamental concept is the circle or sphere. It was introduced by Sophus Lie in the nineteenth century. [The definitive modern textbook on Lie sphere geometry is Harvnb|Cecil|1992 … Wikipedia
Gauss map — In differential geometry, the Gauss map (named after Carl F. Gauss) maps a surface in Euclidean space R3 to the unit sphere S 2. Namely, given a surface X lying in R3, the Gauss map is a continuous map N : X → S 2 such that N ( p ) is a unit… … Wikipedia
Frame bundle — In mathematics, a frame bundle is a principal fiber bundle F(E) associated to any vector bundle E. The fiber of F(E) over a point x is the set of all ordered bases, or frames, for Ex. The general linear group acts naturally on F(E) via a change… … Wikipedia
Orientability — For orientation of vector spaces, see orientation (mathematics). For other uses, see Orientation (disambiguation). The torus is an orientable surface … Wikipedia
Spin structure — In differential geometry, a spin structure on an orientable Riemannian manifold allows one to define associated spinor bundles, giving rise to the notion of a spinor in differential geometry. Spin structures have wide applications to mathematical … Wikipedia
Euler class — In mathematics, specifically in algebraic topology, the Euler class, named after Leonhard Euler, is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how quot;twisted quot; the vector bundle… … Wikipedia
Metric tensor — In the mathematical field of differential geometry, a metric tensor is a type of function defined on a manifold (such as a surface in space) which takes as input a pair of tangent vectors v and w and produces a real number (scalar) g(v,w) in a… … Wikipedia
Darboux frame — In the differential geometry of surfaces, a Darboux frame is a natural moving frame constructed on a surface. It is the analog of the Frenet–Serret frame as applied to surface geometry. A Darboux frame exists at any non umbilic point of a surface … Wikipedia
Gear — For the gear like device used to drive a roller chain, see Sprocket. This article is about mechanical gears. For other uses, see Gear (disambiguation). Two meshing gears transmitting rotational motion. Note that the smaller gear is rotating… … Wikipedia