- oriented cobordism
- мат. ориентированный кобордизм
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Cobordism — A cobordism (W;M,N). In mathematics, cobordism is a fundamental equivalence relation on the class of compact manifolds of the same dimension, set up using the concept of the boundary of a manifold. Two manifolds are cobordant if their disjoint… … Wikipedia
Complex cobordism — In mathematics, complex cobordism is a generalized cohomology theory related to cobordism of manifolds. Its spectrum is denoted by MU. It is an exceptionally powerful cohomology theory, but can be quite hard to compute, so often instead of using… … Wikipedia
List of cohomology theories — This is a list of some of the ordinary and generalized (or extraordinary) homology and cohomology theories in algebraic topology that are defined on the categories of CW complexes or spectra. For other sorts of homology theories see the links at… … Wikipedia
Adams spectral sequence — In mathematics, the Adams spectral sequence is a spectral sequence introduced by Adams (1958). Like all spectral sequences, it is a computational tool; it relates homology theory to what is now called stable homotopy theory. It is a… … Wikipedia
Dehn surgery — In topology, a branch of mathematics, a Dehn surgery, named after Max Dehn, is a specific construction used to modify 3 manifolds. The process takes as input a 3 manifold together with a link. Dehn surgery can be thought of as a two stage process … Wikipedia
Pontryagin class — In mathematics, the Pontryagin classes are certain characteristic classes. The Pontryagin class lies in cohomology groups with index a multiple of four. It applies to real vector bundles. Definition Given a vector bundle E over M , its k th… … Wikipedia
Genus of a multiplicative sequence — In mathematics, the genus of a multiplicative sequence is a ring homomorphism, from the cobordism ring of smooth oriented compact manifolds to another ring, usually the ring of rational numbers.DefinitionA genus phi; assigns a number phi;( X ) to … Wikipedia
Atiyah–Singer index theorem — In the mathematics of manifolds and differential operators, the Atiyah–Singer index theorem states that for an elliptic differential operator on a compact manifold, the analytical index (closely related to the dimension of the space of solutions) … Wikipedia
Exotic sphere — In differential topology, a mathematical discipline, an exotic sphere is a differentiable manifold M that is homeomorphic but not diffeomorphic to the standard Euclidean n sphere. That is, M is a sphere from the point of view of all its… … Wikipedia
Chern class — In mathematics, in particular in algebraic topology and differential geometry, the Chern classes are characteristic classes associated to complex vector bundles. Chern classes were introduced by Shiing Shen Chern (1946). Contents 1 Basic… … Wikipedia
List of important publications in mathematics — One of the oldest surviving fragments of Euclid s Elements, found at Oxyrhynchus and dated to circa AD 100. The diagram accompanies Book II, Proposition 5.[1] This is a list of important publications in mathematics, organized by field. Some… … Wikipedia