- order-dense subset
- мат. плотное по упорядоченности подмножество
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Dense set — In topology and related areas of mathematics, a subset A of a topological space X is called dense (in X) if any point x in X belongs to A or is a limit point of A.[1] Informally, for every point in X, the point is either in A or arbitrarily close … Wikipedia
Order (mathematics) — Contents 1 In algebra 2 In arithmetic 3 In analysis 4 … Wikipedia
Dense-in-itself — In mathematics, a subset A of a topological space is said to be dense in itself if A contains no isolated points. Every dense in itself closed set is perfect. Conversely, every perfect set is dense in itself. A simple example of a set which is… … Wikipedia
Glossary of order theory — This is a glossary of some terms used in various branches of mathematics that are related to the fields of order, lattice, and domain theory. Note that there is a structured list of order topics available as well. Other helpful resources might be … Wikipedia
Cyclic order — In mathematics, a cyclic order is a way to arrange a set of objects in a circle.[nb] Unlike most structures in order theory, a cyclic order cannot be modeled as a binary relation a < b . One does not say that east is more clockwise than west.… … Wikipedia
List of first-order theories — In mathematical logic, a first order theory is given by a set of axioms in somelanguage. This entry lists some of the more common examples used in model theory and some of their properties. PreliminariesFor every natural mathematical structure… … Wikipedia
Total order — In set theory, a total order, linear order, simple order, or (non strict) ordering is a binary relation (here denoted by infix ≤) on some set X. The relation is transitive, antisymmetric, and total. A set paired with a total order is called a… … Wikipedia
Nowhere dense set — A subset A of a topological space X is nowhere dense in X if and only if the interior of the closure of A is empty. The order of operations is important. For example, the set of rational numbers, as a subset of R has the property that the closure … Wikipedia
Completeness (order theory) — In the mathematical area of order theory, completeness properties assert the existence of certain infima or suprema of a given partially ordered set (poset). A special use of the term refers to complete partial orders or complete lattices.… … Wikipedia
Forcing (mathematics) — For the use of forcing in recursion theory, see Forcing (recursion theory). In the mathematical discipline of set theory, forcing is a technique invented by Paul Cohen for proving consistency and independence results. It was first used, in 1963,… … Wikipedia
Separable space — In mathematics a topological space is called separable if it contains a countable dense subset; that is, there exists a sequence { x n } {n=1}^{infty} of elements of the space such that every nonempty open subset of the space contains at least… … Wikipedia