null homotopy

null homotopy
мат. гомотопия нулю

Большой англо-русский и русско-английский словарь. 2001.

Игры ⚽ Нужна курсовая?

Смотреть что такое "null homotopy" в других словарях:

  • Homotopy — This article is about topology. For chemistry, see Homotopic groups. The two dashed paths shown above are homotopic relative to their endpoints. The animation represents one possible homotopy. In topology, two continuous functions from one… …   Wikipedia

  • Homotopy groups of spheres — In the mathematical field of algebraic topology, the homotopy groups of spheres describe how spheres of various dimensions can wrap around each other. They are examples of topological invariants, which reflect, in algebraic terms, the structure… …   Wikipedia

  • Homotopy category of chain complexes — In homological algebra in mathematics, the homotopy category K(A) of chain complexes in an additive category A is a framework for working with chain homotopies and homotopy equivalences. It lies intermediate between the category of chain… …   Wikipedia

  • Timelike homotopy — On a Lorentzian manifold, certain curves are distinguished as timelike. A timelike homotopy between two timelike curves is a homotopy such that each intermediate curve is timelike. No closed timelike curve (CTC) on a Lorentzian manifold is… …   Wikipedia

  • Normal invariant — In mathematics, a normal map is a concept in geometric topology due to William Browder which is of fundamental importance in surgery theory. Given a Poincaré complex X, a normal map on X endows the space, roughly speaking, with some of the… …   Wikipedia

  • Covering space — A covering map satisfies the local triviality condition. Intuitively, such maps locally project a stack of pancakes above an open region, U, onto U. In mathematics, more specifically algebraic topology, a covering map is a continuous surjective… …   Wikipedia

  • Whitehead manifold — In mathematics, the Whitehead manifold is an open 3 manifold that is contractible, but not homeomorphic to R3. Henry Whitehead discovered this puzzling object while he was trying to prove the Poincaré conjecture.A contractible manifold is one… …   Wikipedia

  • Cobordism — A cobordism (W;M,N). In mathematics, cobordism is a fundamental equivalence relation on the class of compact manifolds of the same dimension, set up using the concept of the boundary of a manifold. Two manifolds are cobordant if their disjoint… …   Wikipedia

  • Contractible space — In mathematics, a topological space X is contractible if the identity map on X is null homotopic, i.e. if it is homotopic to some constant map.[1][2] Intuitively, a contractible space is one that can be continuously shrunk to a point. A… …   Wikipedia

  • Contractibility of unit sphere in Hilbert space — In topology, it is a surprising fact that the unit sphere in (infinite dimensional) Hilbert space is a contractible space, sinceno finite dimensional spheres are contractible.This can be demonstrated in several different ways. Topological proof… …   Wikipedia

  • Stable normal bundle — In surgery theory, a branch of mathematics, the stable normal bundle of a differentiable manifold is an invariant which encodes the stable normal (dually, tangential) data. It is also called the Spivak normal bundle, after Michael Spivak… …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»