- normal epimorphism
- мат. нормальный эпиморфизм
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Normal morphism — In category theory and its applications to mathematics, a normal monomorphism or conormal epimorphism is a particularly well behaved type of morphism. A normal category is a category in which every monomorphism is normal. A conormal category is… … Wikipedia
Depth of noncommutative subrings — In ring theory and Frobenius algebra extensions, fields of mathematics, there is a notion of depth two subring or depth of a Frobenius extension. The notion of depth two is important in a certain noncommutative Galois theory, which generates Hopf … Wikipedia
Abelian category — In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototype example of an abelian category is the category of… … Wikipedia
Morphism — In mathematics, a morphism is an abstraction derived from structure preserving mappings between two mathematical structures. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear… … Wikipedia
Cokernel — Coker (mathematics) redirects here. For other uses, see Coker (disambiguation). In mathematics, the cokernel of a linear mapping of vector spaces f : X → Y is the quotient space Y/im(f) of the codomain of f by the image of f. Cokernels are… … Wikipedia
Glossary of category theory — This is a glossary of properties and concepts in category theory in mathematics.CategoriesA category A is said to be: * small provided that the class of all morphisms is a set (i.e., not a proper class); otherwise large. * locally small provided… … Wikipedia
Coequalizer — In category theory, a coequalizer (or coequaliser) is a generalization of a quotient by an equivalence relation to objects in an arbitrary category. It is the categorical construction dual to the equalizer (hence the name). Contents 1 Definition… … Wikipedia
Isomorphism theorem — In mathematics, specifically abstract algebra, the isomorphism theorems are three theorems that describe the relationship between quotients, homomorphisms, and subobjects. Versions of the theorems exist for groups, rings, vector spaces, modules,… … Wikipedia
Glossary of group theory — A group ( G , •) is a set G closed under a binary operation • satisfying the following 3 axioms:* Associativity : For all a , b and c in G , ( a • b ) • c = a • ( b • c ). * Identity element : There exists an e ∈ G such that for all a in G , e •… … Wikipedia
Kripke semantics — (also known as relational semantics or frame semantics, and often confused with possible world semantics) is a formal semantics for non classical logic systems created in the late 1950s and early 1960s by Saul Kripke. It was first made for modal… … Wikipedia
Exact sequence — In mathematics, especially in homological algebra and other applications of abelian category theory, as well as in differential geometry and group theory, an exact sequence is a (finite or infinite) sequence of objects and morphisms between them… … Wikipedia