norm isomorphism
Смотреть что такое "norm isomorphism" в других словарях:
Norm residue isomorphism theorem — In the mathematical field of algebraic K theory, the norm residue isomorphism theorem is a long sought result whose complete proof was announced in 2009. It previously was known as the Bloch–Kato conjecture, after Spencer Bloch and Kazuya Kato,… … Wikipedia
Vector space — This article is about linear (vector) spaces. For the structure in incidence geometry, see Linear space (geometry). Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is… … Wikipedia
Clifford algebra — In mathematics, Clifford algebras are a type of associative algebra. They can be thought of as one of the possible generalizations of the complex numbers and quaternions.[1][2] The theory of Clifford algebras is intimately connected with the… … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia
Space (mathematics) — This article is about mathematical structures called spaces. For space as a geometric concept, see Euclidean space. For all other uses, see space (disambiguation). A hierarchy of mathematical spaces: The inner product induces a norm. The norm… … Wikipedia
Metric tensor — In the mathematical field of differential geometry, a metric tensor is a type of function defined on a manifold (such as a surface in space) which takes as input a pair of tangent vectors v and w and produces a real number (scalar) g(v,w) in a… … Wikipedia
C*-algebra — C* algebras (pronounced C star ) are an important area of research in functional analysis, a branch of mathematics. The prototypical example of a C* algebra is a complex algebra A of linear operators on a complex Hilbert space with two additional … Wikipedia
Dual space — In mathematics, any vector space, V, has a corresponding dual vector space (or just dual space for short) consisting of all linear functionals on V. Dual vector spaces defined on finite dimensional vector spaces can be used for defining tensors… … Wikipedia
Sequence space — In functional analysis and related areas of mathematics, a sequence space is a vector space whose elements are infinite sequences of real or complex numbers. Equivalently, it is a function space whose elements are functions from the natural… … Wikipedia
Lp space — In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p norm for finite dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue (Dunford Schwartz 1958, III.3),… … Wikipedia
Von Neumann algebra — In mathematics, a von Neumann algebra or W* algebra is a * algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. They were originally introduced by John von Neumann,… … Wikipedia