nonsingular form
Смотреть что такое "nonsingular form" в других словарях:
Nonsingular black hole models — A nonsingular black hole model is a mathematical theory of black holes that avoids certain theoretical problems with the standard black hole model, including information loss and the unobservable nature of the black hole event horizon. Contents 1 … Wikipedia
Degenerate form — For other uses, see Degeneracy. In mathematics, specifically linear algebra, a degenerate bilinear form ƒ(x,y) on a vector space V is one such that the map from V to V * (the dual space of V) given by is not an isomorphism. An equivalent… … Wikipedia
Quadratic form — In mathematics, a quadratic form is a homogeneous polynomial of degree two in a number of variables. For example, is a quadratic form in the variables x and y. Quadratic forms occupy a central place in various branches of mathematics, including… … Wikipedia
Bilinear form — In mathematics, a bilinear form on a vector space V is a bilinear mapping V × V → F , where F is the field of scalars. That is, a bilinear form is a function B : V × V → F which is linear in each argument separately::egin{array}{l} ext{1. }B(u + … Wikipedia
Raising and lowering indices — In mathematics and mathematical physics, given a tensor on a manifold M , in the presence of a nonsingular form on M (such as a Riemannian metric or Minkowski metric), one can raise or lower indices: change a ( k , l ) tensor to a ( k + 1, l − 1) … Wikipedia
Metric tensor — In the mathematical field of differential geometry, a metric tensor is a type of function defined on a manifold (such as a surface in space) which takes as input a pair of tangent vectors v and w and produces a real number (scalar) g(v,w) in a… … Wikipedia
Invertible matrix — In linear algebra an n by n (square) matrix A is called invertible (some authors use nonsingular or nondegenerate) if there exists an n by n matrix B such that where In denotes the n by n identity matrix and the multiplication used is ordinary… … Wikipedia
Hodge structure — In mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. A mixed Hodge… … Wikipedia
Dedekind domain — In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily … Wikipedia
matrix — /may triks, ma /, n., pl. matrices /may tri seez , ma /, matrixes. 1. something that constitutes the place or point from which something else originates, takes form, or develops: The Greco Roman world was the matrix for Western civilization. 2.… … Universalium
Symplectic vector space — In mathematics, a symplectic vector space is a vector space V equipped with a nondegenerate, skew symmetric, bilinear form omega; called the symplectic form. Explicitly, a symplectic form is a bilinear form omega; : V times; V rarr; R which is *… … Wikipedia