- nilpotent subgroup
- мат. нильпотентная подгруппа
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Nilpotent orbit — Nilpotent orbits are generalizations of nilpotent matrices that play an important role in representation theory of real and complex semisimple Lie groups and semisimple Lie algebras. Contents 1 Definition 2 Examples 3 Properties … Wikipedia
Nilpotent group — Concepts in group theory category of groups subgroups, normal subgroups group homomorphisms, kernel, image, quotient direct product, direct sum semidirect product, wreath product … Wikipedia
Subgroup series — In mathematics, a subgroup series is a chain of subgroups: Subgroup series can simplify the study of a group to the study of simpler subgroups and their relations, and several subgroup series can be invariantly defined and are important… … Wikipedia
Subgroup growth — Im mathematics, subgroup growth is a branch of group theory, dealing with quantitative questions about subgroups of a given group. [citebook|title=Subgroup Growth|author=Alexander Lubotzky, Dan Segal|year=2003|publisher=Birkhäuser|id=ISBN… … Wikipedia
Nilpotent ideal — In mathematics, more specifically ring theory, an ideal, I, of a ring is said to be a nilpotent ideal, if there exists a natural number k such that Ik = 0.[1] By Ik, it is meant the additive subgroup generated by the set of all products of k… … Wikipedia
Subgroup — This article is about the mathematical concept For the galaxy related concept, see Galaxy subgroup. Concepts in group theory category of groups subgroups, normal subgroups group homomorphisms, kernel, image, quotient direct product, direct sum … Wikipedia
Fitting subgroup — In mathematics, especially in the area of algebra known as group theory, the Fitting subgroup F of a finite group G , named after Hans Fitting, is the unique largest normal nilpotent subgroup of G . Intuitively, it represents the smallest… … Wikipedia
Carter subgroup — In mathematics, especially in the field of group theory, a Carter subgroup of a finite group G is a subgroup H that is a nilpotent group, and self normalizing. These subgroups were introduced by Roger Carter, and marked the beginning of the post… … Wikipedia
Focal subgroup theorem — In abstract algebra, the focal subgroup theorem describes the fusion of elements in a Sylow subgroup of a finite group. The focal subgroup theorem was introduced in (Higman 1958) and is the first major application of the transfer according to… … Wikipedia
Normal subgroup — Concepts in group theory category of groups subgroups, normal subgroups group homomorphisms, kernel, image, quotient direct product, direct sum semidirect product, wreath product … Wikipedia
Commutator subgroup — In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group.[1][2] The commutator subgroup is important because it is the smallest… … Wikipedia