monoid image
Смотреть что такое "monoid image" в других словарях:
Free monoid — In abstract algebra, the free monoid on a set A is the monoid whose elements are all the finite sequences (or strings) of zero or more elements from A , with the binary operation of concatenation. It is usually denoted A lowast;. The identity… … Wikipedia
Semigroup — This article is about the algebraic structure. For applications to differential equations, see C0 semigroup. In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative binary operation. A semigroup… … Wikipedia
Kernel (algebra) — In the various branches of mathematics that fall under the heading of abstract algebra, the kernel of a homomorphism measures the degree to which the homomorphism fails to be injective. An important special case is the kernel of a matrix, also… … Wikipedia
Exotic sphere — In differential topology, a mathematical discipline, an exotic sphere is a differentiable manifold M that is homeomorphic but not diffeomorphic to the standard Euclidean n sphere. That is, M is a sphere from the point of view of all its… … Wikipedia
Semigroup action — In algebra and theoretical computer science, an action or act of a semigroup on a set is a rule which associates to each element of the semigroup a transformation of the set in such a way that the product of two elements of the semigroup (using… … Wikipedia
Adjoint functors — Adjunction redirects here. For the construction in field theory, see Adjunction (field theory). For the construction in topology, see Adjunction space. In mathematics, adjoint functors are pairs of functors which stand in a particular… … Wikipedia
Inverse semigroup — In mathematics, an inverse semigroup S is a semigroup in which every element x in S has a unique inverse y in S in the sense that x = xyx and y = yxy. Inverse semigroups appear in a range of contexts; for example, they can be employed in the… … Wikipedia
Transformation semigroup — In algebra, a transformation semigroup (or composition semigroup) is a collection of functions from a set to itself which is closed under function composition. If it includes the identity function, it is a transformation (or composition) monoid.… … Wikipedia
Residuated lattice — In abstract algebra, a residuated lattice is an algebraic structure that is simultaneously a lattice x le; y and a monoid x • y which admits operations x z and z / y loosely analogous to division or implication when x • y is viewed as… … Wikipedia
Polynomial ring — In mathematics, especially in the field of abstract algebra, a polynomial ring is a ring formed from the set of polynomials in one or more variables with coefficients in another ring. Polynomial rings have influenced much of mathematics, from the … Wikipedia
Group (mathematics) — This article covers basic notions. For advanced topics, see Group theory. The possible manipulations of this Rubik s Cube form a group. In mathematics, a group is an algebraic structure consisting of a set together with an operation that combines … Wikipedia