- metric compactification
- мат. метрическая компактификация
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Calabi–Yau manifold — In mathematics, Calabi ndash;Yau manifolds are compact Kähler manifolds whose canonical bundle is trivial. They were named Calabi ndash;Yau spaces by physicists in 1985, [cite journal | author = Candelas, Horowitz, Strominger and Witten | year =… … Wikipedia
Compact space — Compactness redirects here. For the concept in first order logic, see compactness theorem. In mathematics, specifically general topology and metric topology, a compact space is an abstract mathematical space whose topology has the compactness… … Wikipedia
Conformal geometry — In mathematics, conformal geometry is the study of the set of angle preserving (conformal) transformations on a space. In two real dimensions, conformal geometry is precisely the geometry of Riemann surfaces. In more than two dimensions,… … Wikipedia
3-sphere — Stereographic projection of the hypersphere s parallels (red), meridians (blue) and hypermeridians (green). Because this projection is conformal, the curves intersect each other orthogonally (in the yellow points) as in 4D. All curves are circles … Wikipedia
Kaluza–Klein theory — In physics, Kaluza–Klein theory (or KK theory, for short) is a model that seeks to unify the two fundamental forces of gravitation and electromagnetism. The theory was first published in 1921 and was discovered by the mathematician Theodor Kaluza … Wikipedia
Counterexamples in Topology — Author(s) Lynn Arthur Steen J. Ar … Wikipedia
Approach space — In topology, approach spaces are a generalization of metric spaces, based on point to set distances, instead of point to point distances. They were introduced by [http://www.math.ua.ac.be/TOP/ Robert Lowen] in 1989.DefinitionGiven a metric space… … Wikipedia
P-adic number — In mathematics, the p adic number systems were first described by Kurt Hensel in 1897 [cite journal | last = Hensel | first = Kurt | title = Über eine neue Begründung der Theorie der algebraischen Zahlen | journal =… … Wikipedia
p-adic number — In mathematics, and chiefly number theory, the p adic number system for any prime number p extends the ordinary arithmetic of the rational numbers in a way different from the extension of the rational number system to the real and complex number… … Wikipedia
AdS/CFT correspondence — For the relation of the AdS/CFT correspondence to the general context of string theory, see String theory. The conformal field theory, which may be a gauge theory lies on the conformal boundary of anti deSitter space with quantum gravity. In… … Wikipedia
Supergravity — In theoretical physics, supergravity (supergravity theory) is a field theory that combines the principles of supersymmetry and general relativity. Together, these imply that, in supergravity, the supersymmetry is a local symmetry (in contrast to… … Wikipedia