measurable norm

measurable norm
мат. измеримая норма

Большой англо-русский и русско-английский словарь. 2001.

Игры ⚽ Нужно решить контрольную?

Смотреть что такое "measurable norm" в других словарях:

  • Norm (mathematics) — This article is about linear algebra and analysis. For field theory, see Field norm. For ideals, see Norm of an ideal. For group theory, see Norm (group). For norms in descriptive set theory, see prewellordering. In linear algebra, functional… …   Wikipedia

  • Lp space — In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p norm for finite dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue (Dunford Schwartz 1958, III.3),… …   Wikipedia

  • Space (mathematics) — This article is about mathematical structures called spaces. For space as a geometric concept, see Euclidean space. For all other uses, see space (disambiguation). A hierarchy of mathematical spaces: The inner product induces a norm. The norm… …   Wikipedia

  • Hölder's inequality — In mathematical analysis Hölder s inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces. Let (S, Σ, μ) be a measure space and let 1 ≤ p, q ≤ ∞ with… …   Wikipedia

  • Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… …   Wikipedia

  • Lebesgue integration — In mathematics, the integral of a non negative function can be regarded in the simplest case as the area between the graph of that function and the x axis. Lebesgue integration is a mathematical construction that extends the integral to a larger… …   Wikipedia

  • Von Neumann algebra — In mathematics, a von Neumann algebra or W* algebra is a * algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. They were originally introduced by John von Neumann,… …   Wikipedia

  • Total variation — As the green ball travels on the graph of the given function, the length of the path travelled by that ball s projection on the y axis, shown as a red ball, is the total variation of the function. In mathematics, the total variation identifies… …   Wikipedia

  • Birnbaum–Orlicz space — In the mathematical analysis, and especially in real and harmonic analysis, a Birnbaum–Orlicz space is a type of function space which generalizes the Lp spaces. Like the Lp spaces, they are Banach spaces. The spaces are named for Władysław Orlicz …   Wikipedia

  • Outcome-based education — (OBE) is a recurring education reform model. It is a student centered learning philosophy that focuses on empirically measuring student performance, which are called outcomes. OBE contrasts with traditional education, which primarily focuses on… …   Wikipedia

  • Hardy space — In complex analysis, the Hardy spaces (or Hardy classes) Hp are certain spaces of holomorphic functions on the unit disk or upper half plane. They were introduced by Frigyes Riesz (Riesz 1923), who named them after G. H. Hardy, because of the… …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»