- logarithmically convex
- мат. логарифмически выпуклый
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Logarithmically convex function — In mathematics, a function f defined on an convex subset of a real vector space and taking positive values is said to be logarithmically convex if log f(x) is a convex function of x.It is easy to see that a logarithmically convex function is a… … Wikipedia
Convex function — on an interval. A function (in black) is convex if and only i … Wikipedia
Logarithmically concave function — A function f : R^n o R^+ is logarithmically concave (or log concave for short), if its natural logarithm ln(f(x)), is concave. Note that we allow here concave functions to take value infty. Every concave function is log concave, however the… … Wikipedia
Logarithmically concave measure — In mathematics, A Borel measure mu; on n dimensional Euclidean space R n is called logarithmically concave (or log concave for short) if, for any compact subsets A and B of R n and 0 lt; lambda; lt; 1, one has: mu(lambda A + (1 lambda) B) geq… … Wikipedia
Convexidad logarítmica — Esta página o sección está siendo traducida del idioma inglés a partir del artículo Logarithmically convex function, razón por la cual puede haber lagunas de contenidos, errores sintácticos o escritos sin traducir. Puedes colaborar con… … Wikipedia Español
Gamma function — For the gamma function of ordinals, see Veblen function. The gamma function along part of the real axis In mathematics, the gamma function (represented by the capital Greek letter Γ) is an extension of the factorial function, with its… … Wikipedia
List of mathematics articles (L) — NOTOC L L (complexity) L BFGS L² cohomology L function L game L notation L system L theory L Analyse des Infiniment Petits pour l Intelligence des Lignes Courbes L Hôpital s rule L(R) La Géométrie Labeled graph Labelled enumeration theorem Lack… … Wikipedia
Bohr–Mollerup theorem — In mathematical analysis, the Bohr–Mollerup theorem is named after the Danish mathematicians Harald Bohr and Johannes Mollerup, who proved it. The theorem characterizes the gamma function, defined for x > 0 by:Gamma(x)=int 0^infty t^{x 1} e^{… … Wikipedia
Hadamard three-circle theorem — In complex analysis, a branch of mathematics, the Hadamard three circle theorem is a result about the behavior of holomorphic functions.Let f(z) be a holomorphic function on the annulus :r 1leqleft| z ight| leq r 3. Let M(r) be the maximum of… … Wikipedia
Hardy's theorem — In mathematics, Hardy s theorem is a result in complex analysis describing the behavior of holomorphic functions. Let f be a holomorphic function on the open ball centered at zero and radius R in the complex plane, and assume that f is not a… … Wikipedia
Concave function — In mathematics, a concave function is the negative of a convex function. A concave function is also synonymously called concave downwards, concave down, convex upwards, convex cap or upper convex. Contents 1 Definition 2 Properties 3 Examples … Wikipedia