locally homeomorphic
Смотреть что такое "locally homeomorphic" в других словарях:
Locally connected space — In this topological space, V is a neighbourhood of p and it contains a connected neighbourhood (the dark green disk) that contains p. In topology and other branches of mathematics, a topological space X is locally connected if every point admits… … Wikipedia
Locally compact space — In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space.Formal definitionLet X be a topological space. The… … Wikipedia
Locally regular space — In mathematics, particularly topology, a topological space X is locally regular if intuitively it looks locally like a regular space. More precisely, a locally regular space satisfies the property that each point of the space belongs to a subset… … Wikipedia
Locally normal space — In mathematics, particularly topology, a topological space X is locally normal if intuitively it looks locally like a normal space. More precisely, a locally normal space satisfies the property that each point of the space belongs to a… … Wikipedia
locally Euclidean space — Math. a topological space in which each point has a neighborhood that is homeomorphic to an open set in a Euclidean space of specified dimension. * * * … Universalium
locally Euclidean space — Math. a topological space in which each point has a neighborhood that is homeomorphic to an open set in a Euclidean space of specified dimension … Useful english dictionary
Manifold — For other uses, see Manifold (disambiguation). The sphere (surface of a ball) is a two dimensional manifold since it can be represented by a collection of two dimensional maps. In mathematics (specifically in differential geometry and topology),… … Wikipedia
Diffeomorphism — In mathematics, a diffeomorphism is an isomorphism in the category of smooth manifolds. It is an invertible function that maps one differentiable manifold to another, such that both the function and its inverse are smooth. The image of a… … Wikipedia
Differentiable manifold — A nondifferentiable atlas of charts for the globe. The results of calculus may not be compatible between charts if the atlas is not differentiable. In the middle chart the Tropic of Cancer is a smooth curve, whereas in the first it has a sharp… … Wikipedia
Long line (topology) — In topology, the long line (or Alexandroff line) is a topological space analogous to the real line, but much longer. Because it behaves locally just like the real line, but has different large scale properties, it serves as one of the basic… … Wikipedia
Space (mathematics) — This article is about mathematical structures called spaces. For space as a geometric concept, see Euclidean space. For all other uses, see space (disambiguation). A hierarchy of mathematical spaces: The inner product induces a norm. The norm… … Wikipedia