- left-invariant metric
- мат. левоинвариантная метрика
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Metric tensor — In the mathematical field of differential geometry, a metric tensor is a type of function defined on a manifold (such as a surface in space) which takes as input a pair of tangent vectors v and w and produces a real number (scalar) g(v,w) in a… … Wikipedia
Metric tensor (general relativity) — This article is about metrics in general relativity. For a discussion of metrics in general, see metric tensor. Metric tensor of spacetime in general relativity written as a matrix. In general relativity, the metric tensor (or simply, the metric) … Wikipedia
Complete metric space — Cauchy completion redirects here. For the use in category theory, see Karoubi envelope. In mathematical analysis, a metric space M is called complete (or Cauchy) if every Cauchy sequence of points in M has a limit that is also in M or,… … Wikipedia
Poincaré metric — In mathematics, the Poincaré metric, named after Henri Poincaré, is the metric tensor describing a two dimensional surface of constant negative curvature. It is the natural metric commonly used in a variety of calculations in hyperbolic geometry… … Wikipedia
Yamabe invariant — In mathematics, in the field of differential geometry, the Yamabe invariant (also referred to as the sigma constant) is a real number invariant associated to a smooth manifold that is preserved under diffeomorphisms. It was first written down… … Wikipedia
Word metric — In group theory, a word metric on a group G is a way to measure distance between any two elements of G . As the name suggests, the word metric is a metric on G , assigning to any two elements g , h of G a distance d(g,h) that measures how… … Wikipedia
Gödel metric — The Gödel metric is an exact solution of the Einstein field equations in which the stress energy tensor contains two terms, the first representing the matter density of a homogeneous distribution of swirling dust particles, and the second… … Wikipedia
Kerr metric — In general relativity, the Kerr metric (or Kerr vacuum) describes the geometry of spacetime around a rotating massive body. According to this metric, such rotating bodies should exhibit frame dragging, an unusual prediction of general relativity; … Wikipedia
Mason's Invariant — Introduction When trying to solve a seemingly difficult problem, Sam said to concentrate on the easier ones first; the rest, including the hardest ones, will follow, recalled Andrew Viterbi, co founder and former vice president of Qualcomm. He… … Wikipedia
Mason's invariant — In electronics, Mason s invariant, named after Samuel Jefferson Mason, is a measure of the quality of transistors. When trying to solve a seemingly difficult problem, Sam said to concentrate on the easier ones first; the rest, including the… … Wikipedia
Schwarzschild metric — In Einstein s theory of general relativity, the Schwarzschild solution (or the Schwarzschild vacuum) describes the gravitational field outside a spherical, non rotating mass such as a (non rotating) star, planet, or black hole. It is also a good… … Wikipedia