- left-adjoint functor
- мат. сопряженный слева функтор
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Adjoint functors — Adjunction redirects here. For the construction in field theory, see Adjunction (field theory). For the construction in topology, see Adjunction space. In mathematics, adjoint functors are pairs of functors which stand in a particular… … Wikipedia
Functor category — In category theory, a branch of mathematics, the functors between two given categories can themselves be turned into a category; the morphisms in this functor category are natural transformations between functors. Functor categories are of… … Wikipedia
Representable functor — In mathematics, especially in category theory, a representable functor is a functor of a special form from an arbitrary category into the category of sets. Such functors give representations of an abstract category in terms of known structures (i … Wikipedia
Forgetful functor — In mathematics, in the area of category theory, a forgetful functor is a type of functor. The nomenclature is suggestive of such a functor s behaviour: given some object with structure as input, some or all of the object s structure or properties … Wikipedia
Monoidal functor — In category theory, monoidal functors are functors between monoidal categories which preserve the monoidal structure. More specifically, a monoidal functor between two monoidal categories consists of a functor between the categories, along with… … Wikipedia
Diagonal functor — In category theory, for any object a in any category where the product exists, there exists the diagonal morphism satisfying for , where πk … Wikipedia
Exact functor — In homological algebra, an exact functor is a functor, from some category to another, which preserves exact sequences. Exact functors are very convenient in algebraic calculations, roughly speaking because they can be applied to presentations of… … Wikipedia
Derived functor — In mathematics, certain functors may be derived to obtain other functors closely related to the original ones. This operation, while fairly abstract, unifies a number of constructions throughout mathematics. Contents 1 Motivation 2 Construction… … Wikipedia
Hom functor — In mathematics, specifically in category theory, Hom sets, i.e. sets of morphisms between objects, give rise to important functors to the category of sets. These functors are called Hom functors and have numerous applications in category theory… … Wikipedia
Hermitian adjoint — In mathematics, specifically in functional analysis, each linear operator on a Hilbert space has a corresponding adjoint operator. Adjoints of operators generalize conjugate transposes of square matrices to (possibly) infinite dimensional… … Wikipedia
Inverse image functor — In mathematics, the inverse image functor is a contravariant construction of sheaves. The direct image functor is the primary operation on sheaves, with the simplest definition. The inverse image exhibits some relatively subtle… … Wikipedia