- least-squares polynomial
- мат. многочлен, полученный методом наименьших квадратов
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Least squares — The method of least squares is a standard approach to the approximate solution of overdetermined systems, i.e., sets of equations in which there are more equations than unknowns. Least squares means that the overall solution minimizes the sum of… … Wikipedia
Least Squares — A statistical method used to determine a line of best fit by minimizing the sum of squares created by a mathematical function. A square is determined by squaring the distance between a data point and the regression line. The least squares… … Investment dictionary
Linear least squares (mathematics) — This article is about the mathematics that underlie curve fitting using linear least squares. For statistical regression analysis using least squares, see linear regression. For linear regression on a single variable, see simple linear regression … Wikipedia
Linear least squares — is an important computational problem, that arises primarily in applications when it is desired to fit a linear mathematical model to measurements obtained from experiments. The goals of linear least squares are to extract predictions from the… … Wikipedia
Linear least squares/Proposed — Linear least squares is an important computational problem, that arises primarily in applications when it is desired to fit a linear mathematical model to observations obtained from experiments. Mathematically, it can be stated as the problem of… … Wikipedia
Total least squares — The bivariate (Deming regression) case of Total Least Squares. The red lines show the error in both x and y. This is different from the traditional least squares method which measures error parallel to the y axis. The case shown, with deviations… … Wikipedia
Ordinary least squares — This article is about the statistical properties of unweighted linear regression analysis. For more general regression analysis, see regression analysis. For linear regression on a single variable, see simple linear regression. For the… … Wikipedia
Non-linear least squares — is the form of least squares analysis which is used to fit a set of m observations with a model that is non linear in n unknown parameters (m > n). It is used in some forms of non linear regression. The basis of the method is to… … Wikipedia
Polynomial and rational function modeling — In statistical modeling (especially process modeling), polynomial functions and rational functions are sometimes used as an empirical technique for curve fitting.Polynomial function modelsA polynomial function is one that has the form:y = a… … Wikipedia
Characteristic polynomial — This article is about the characteristic polynomial of a matrix. For the characteristic polynomial of a matroid, see Matroid. For that of a graded poset, see Graded poset. In linear algebra, one associates a polynomial to every square matrix: its … Wikipedia
Proofs of Fermat's theorem on sums of two squares — Fermat s theorem on sums of two squares asserts that an odd prime number p can be expressed as: p = x^2 + y^2with integer x and y if and only if p is congruent to 1 (mod 4). The statement was announced by Fermat in 1640, but he supplied no proof … Wikipedia