- geometric realization
- мат. геометрическая реализация
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Nielsen realization problem — The Nielsen realization problem is a question asked by Jakob Nielsen (1932, p. 147–148) about whether finite subgroups of mapping class groups can act on surfaces, that was answered positively by Steven Kerckhoff (1980, 1983). Statement … Wikipedia
Simplicial set — In mathematics, a simplicial set is a construction in categorical homotopy theory which is a purely algebraic model of the notion of a well behaved topological space. Historically, this model arose from earlier work in combinatorial topology and… … Wikipedia
Delta set — In mathematics, a delta set (or Δ set) S is a combinatorial object that is useful in the construction and triangulation of topological spaces, and also in the computation of related algebraic invariants of such spaces. A delta set is somewhat… … Wikipedia
Nerve (category theory) — In category theory, the nerve N(C) of a small category C is a simplicial set constructed from the objects and morphisms of C. The geometric realization of this simplicial set is a topological space, called the classifying space of the category C … Wikipedia
Orbifold — This terminology should not be blamed on me. It was obtained by a democratic process in my course of 1976 77. An orbifold is something with many folds; unfortunately, the word “manifold” already has a different definition. I tried “foldamani”,… … Wikipedia
Abstract simplicial complex — In mathematics, an abstract simplicial complex is a purely combinatorial description of the geometric notion of a simplicial complex, consisting of a family of finite sets closed under the operation of taking subsets. In the context of matroids… … Wikipedia
Simplicial homology — In mathematics, in the area of algebraic topology, simplicial homology is a theory with a finitary definition, and is probably the most tangible variant of homology theory. Simplicial homology concerns topological spaces whose building blocks are … Wikipedia
Schnyder's theorem — In mathematics, Schnyder s theorem in graph theory is a planarity characterization for graphs in termsof the order dimension of their incidence posets.The incidence poset P(G) of a graph G with vertex set V and edge set E is the partially ordered … Wikipedia
Building (mathematics) — In mathematics, a building (also Tits building, Bruhat–Tits building) is a combinatorial and geometric structure which simultaneously generalizes certain aspects of flag manifolds, finite projective planes, and Riemannian symmetric spaces.… … Wikipedia
Simplicial complex — In mathematics, a simplicial complex is a topological space of a particular kind, constructed by gluing together points, line segments, triangles, and their n dimensional counterparts (see illustration). Simplicial complexes should not be… … Wikipedia
Topological graph theory — In mathematics topological graph theory is a branch of graph theory. It studies the embedding of graphs in surfaces, and graphs as topological spaces. [J.L. Gross and T.W. Tucker, Topological graph theory, Wiley Interscience, 1987] Embedding a… … Wikipedia