generalized sphere
Смотреть что такое "generalized sphere" в других словарях:
Generalized Poincaré conjecture — In the mathematical area of topology, the term Generalized Poincaré conjecture refers to a statement that a manifold which is a homotopy sphere is a sphere. More precisely, one fixes a category of manifolds: topological (Top), differentiable… … Wikipedia
Generalized coordinates — By deriving equations of motion in terms of a general set of generalized coordinates, the results found will be valid for any coordinate system that is ultimately specified. cite book |last=Torby |first=Bruce |title=Advanced Dynamics for… … Wikipedia
Sphere — Globose redirects here. See also Globose nucleus. A sphere (from Greek σφαίρα sphaira , globe, ball, [ [http://www.perseus.tufts.edu/cgi bin/ptext?doc=Perseus%3Atext%3A1999.04.0057%3Aentry%3D%23101561 Sphaira, Henry George Liddell, Robert Scott,… … Wikipedia
Generalized flag variety — In mathematics, a generalized flag variety (or simply flag variety) is a homogeneous space whose points are flags in a finite dimensional vector space V over a field F. When F is the real or complex numbers, a generalized flag variety is a smooth … Wikipedia
Exotic sphere — In differential topology, a mathematical discipline, an exotic sphere is a differentiable manifold M that is homeomorphic but not diffeomorphic to the standard Euclidean n sphere. That is, M is a sphere from the point of view of all its… … Wikipedia
Unit sphere — some unit spheres In mathematics, a unit sphere is the set of points of distance 1 from a fixed central point, where a generalized concept of distance may be used; a closed unit ball is the set of points of distance less than or equal to 1 from a … Wikipedia
Bloch sphere — In quantum mechanics, the Bloch sphere is a geometrical representation of the pure state space of a two level quantum mechanical system named after the physicist Felix Bloch. Alternatively, it is the pure state space of a 1 qubit quantum register … Wikipedia
Homotopy sphere — In algebraic topology, a branch of mathematics, a homotopy sphere is an n manifold homotopy equivalent to the n sphere. It thus has the same homotopy groups and the same homology groups, as the n sphere. So every homotopy sphere is an homology… … Wikipedia
Orbital integral — In mathematics, an orbital integral is an integral transform that generalizes the spherical mean operator to homogeneous spaces. Instead of integrating over spheres, one integrates over generalized spheres: for a homogeneous space… … Wikipedia
Rotation matrix — In linear algebra, a rotation matrix is a matrix that is used to perform a rotation in Euclidean space. For example the matrix rotates points in the xy Cartesian plane counterclockwise through an angle θ about the origin of the Cartesian… … Wikipedia
Particle in a spherically symmetric potential — In quantum mechanics, the particle in a spherically symmetric potential describes the dynamics of a particle in a potential which has spherical symmetry. The Hamiltonian for such a system has the form:hat{H} = frac{hat{p}^2}{2m 0} + V(r)where m 0 … Wikipedia