- formally provable
- мат. формально доказуемый
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Provable security — In cryptography, a system has provable security if its security requirements can be stated formally in an adversarial model, as opposed to heuristically, with clear assumptions that the adversary has access to the system as well as enough… … Wikipedia
On Formally Undecidable Propositions of Principia Mathematica and Related Systems — This article describes the publication details of a famous paper in mathematical logic. For information about the theorems proved in this paper, see Gödel s incompleteness theorems. Über formal unentscheidbare Sätze der Principia Mathematica und… … Wikipedia
Consistency — For other uses, see Consistency (disambiguation). In logic, a consistent theory is one that does not contain a contradiction.[1] The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a … Wikipedia
Gödel's incompleteness theorems — In mathematical logic, Gödel s incompleteness theorems, proved by Kurt Gödel in 1931, are two theorems stating inherent limitations of all but the most trivial formal systems for arithmetic of mathematical interest. The theorems are of… … Wikipedia
Proof sketch for Gödel's first incompleteness theorem — This article gives a sketch of a proof of Gödel s first incompleteness theorem. This theorem applies to any formal theory that satisfies certain technical hypotheses which are discussed as needed during the sketch. We will assume for the… … Wikipedia
Turing's proof — First published in January 1937 with the title On Computable Numbers, With an Application to the Entscheidungsproblem , Turing s proof was the second proof of the assertion (Alonzo Church proof was first) that some questions are undecidable :… … Wikipedia
mathematics, foundations of — Scientific inquiry into the nature of mathematical theories and the scope of mathematical methods. It began with Euclid s Elements as an inquiry into the logical and philosophical basis of mathematics in essence, whether the axioms of any system… … Universalium
Gödel's completeness theorem — is a fundamental theorem in mathematical logic that establishes a correspondence between semantic truth and syntactic provability in first order logic. It was first proved by Kurt Gödel in 1929. A first order formula is called logically valid if… … Wikipedia
metalogic — /met euh loj ik/, n. the logical analysis of the fundamental concepts of logic. [1835 45; META + LOGIC] * * * Study of the syntax and the semantics of formal languages and formal systems. It is related to, but does not include, the formal… … Universalium
Axiom of choice — This article is about the mathematical concept. For the band named after it, see Axiom of Choice (band). In mathematics, the axiom of choice, or AC, is an axiom of set theory stating that for every family of nonempty sets there exists a family of … Wikipedia
Zermelo–Fraenkel set theory — Zermelo–Fraenkel set theory, with the axiom of choice, commonly abbreviated ZFC, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics.ZFC consists of a single primitive ontological notion, that of… … Wikipedia