finite filtration
Смотреть что такое "finite filtration" в других словарях:
Whitney conditions — In differential topology, a branch of mathematics, the Whitney conditions are conditions on a pair of submanifolds of a manifold introduced by Hassler Whitney in 1965. A finite filtration by closed subsets F i of a smooth manifold such that the… … Wikipedia
Mechanosensitive channels — Finite Element Model of MscL transmembrane model. This figure is similar to the Tang et al. [28]. Mechanosensitive channels or mechanosensitive ion channels are membrane proteins capable of responding over a wide dynamic range to external… … Wikipedia
Hodge structure — In mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. A mixed Hodge… … Wikipedia
analysis — /euh nal euh sis/, n., pl. analyses / seez /. 1. the separating of any material or abstract entity into its constituent elements (opposed to synthesis). 2. this process as a method of studying the nature of something or of determining its… … Universalium
Semimartingale — In probability theory, a real valued process X is called a semimartingale if it can be decomposed as the sum of a local martingale and an adapted finite variation process.Semimartingales are good integrators , forming the largest class of… … Wikipedia
D-module — In mathematics, a D module is a module over a ring D of differential operators. The major interest of such D modules is as an approach to the theory of linear partial differential equations. Since around 1970, D module theory has been built up,… … Wikipedia
Kripke semantics — (also known as relational semantics or frame semantics, and often confused with possible world semantics) is a formal semantics for non classical logic systems created in the late 1950s and early 1960s by Saul Kripke. It was first made for modal… … Wikipedia
Clifford algebra — In mathematics, Clifford algebras are a type of associative algebra. They can be thought of as one of the possible generalizations of the complex numbers and quaternions.[1][2] The theory of Clifford algebras is intimately connected with the… … Wikipedia
Group ring — This page discusses the algebraic group ring of a discrete group; for the case of a topological group see group algebra, and for a general group see Group Hopf algebra. In algebra, a group ring is a free module and at the same time a ring,… … Wikipedia
Mathematics and Physical Sciences — ▪ 2003 Introduction Mathematics Mathematics in 2002 was marked by two discoveries in number theory. The first may have practical implications; the second satisfied a 150 year old curiosity. Computer scientist Manindra Agrawal of the… … Universalium
Exterior algebra — In mathematics, the exterior product or wedge product of vectors is an algebraic construction generalizing certain features of the cross product to higher dimensions. Like the cross product, and the scalar triple product, the exterior product of… … Wikipedia